Process Noise “Q” covarience matrix in a kalman filter
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to implement a Kalman filter on a Phasor Measurement Unit (PMU) values. I meaured the signal from PMU and give those meaurement as input to Kalman filter to get best estimate. I do not have a Process model. I assume A, B, C and D matrices.
My question is while calculating Q covarience matrix (process noise) in MATLAB, should i give the whole measurement as input to "cov" function in MATLAB or instead of whole measurement i should give the error(actual- measurement) to "cov" function to calculate Q?
Please guide me? Thanks in advance.
Farhan
0 Commenti
Risposte (1)
John Petersen
il 2 Ott 2014
The measurement error is not used to update any covariance matrices in a Kalman filter.
0 Commenti
Vedere anche
Categorie
Scopri di più su Online Estimation in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!