How to specify limits for lsqnonlin
10 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I would like to specify that variables in my lsqnonlin fit are real. The other vectors in my problem are complex so I cannot use a fully real solver.
My function has the following form. r and theta are real-valued coordinate matrices. Intensity is a complex valued matrix. p is the real-valued and positive vector (at least that is what I want to specify). Hej is the function to be minimized.
Hej= @(p)(p(1)*besselj(1,p(2)*r)+(p(4)*besselj(1,p(6)*r).*cos(theta+p(8))+p(9)*besselj(1,p(6)*r).*sin(theta+p(8)))*exp(1i*p(5))).*(r/a<=1) ...
+ (p(1)*besselj(1, p(2)*a)/besselk(1, p(3)*a)*besselk(1,p(3)*r)+...
(p(4)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*cos(theta+p(8))+p(9)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*sin(theta+p(8))).*exp(1i*p(5))).*(r/a>1)...
-Intensity;
opts = optimoptions(@lsqnonlin,'DiffMaxChange', 0.1,'FinDiffType', 'central', 'Display','off','MaxFunEvals',2E7,'TolFun',1E-18,'TolX',1E-24,'MaxIter',4E3);
x0 = st; % arbitrary initial guess
lb = 0.0*ones(size(st));
[p_estimated,resnorm,residuals,exitflag,output] = lsqnonlin(Hej,x0, lb,[], opts);
The initial guess is given as real-valued and positive vector.
So how do I specify that the only valid solution are positive and realvalued?
0 Commenti
Risposta accettata
Matt J
il 18 Set 2014
Modificato: Matt J
il 18 Set 2014
Implement the objective function as follows, splitting Hej into real and imaginary parts,
function out=objective(p,Intensity,r,theta)
Hej = (p(1)*besselj(1,p(2)*r)+(p(4)*besselj(1,p(6)*r).*cos(theta+p(8))+p(9)*besselj(1,p(6)*r).*sin(theta+p(8)))*exp(1i*p(5))).*(r/a<=1) + (p(1)*besselj(1, p(2)*a)/besselk(1, p(3)*a)*besselk(1,p(3)*r)+(p(4)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*cos(theta+p(8))+p(9)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*sin(theta+p(8))).*exp(1i*p(5))).*(r/a>1)-Intensity;
out=[real(Hej); imag(Hej)]; %Split into real and imaginary parts
end
and the minimization as
lsqnonlin(@(p)objective(p,Intensity,r,theta) , x0, lb,[], opts);
8 Commenti
Matt J
il 19 Set 2014
Way, way, way over-complicated. You have functions within functions within cells, whereas my original proposal was just two lines of numeric MATLAB operations...
Più risposte (1)
Roger Wohlwend
il 18 Set 2014
I am afraid you cannot order the optimizing function to search for a real solution. If you want a real solution you have to make sure that your function Hej returns only real values. Since you use lsqnonlin as optimizing function your goal is to minimize the sum of the squared elements of the vector Hej. In my opinion, it does not make sense to minimize the sum of squared complex numbers. It would make more sense to minimize the sum of the absolute values of the complex numbers. So perhaps you should adjust Hej in a way that it returns the absolute values of the complex numbers instead of the complex numbers. If you do that, Hej returns only real values. As a consequence lsqnonlin should search for real solutions only.
Vedere anche
Categorie
Scopri di più su Matrix Indexing in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!