extend a optimization function in a loop
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I want to create some point that distance beteen each two point must not be exceed from a specific value and at the same time these points must be close to each other as more as possible. I use spherical coordinate and wrote this code(for two point). as in each itration a "squre" term adds to the "fun", what's the best way to develope this code for any arbitrary number of point (for example 300 point) without repeating "elseif" loop . I atached my code and "nonlcon" functions
clc
clear
X(1) = 0;
Y(1) = 0;
Z(1) = 0;
for i=2:3
if i == 2
options = optimoptions('fmincon','MaxFunctionEvaluations',10000,'MaxIterations',5000);
multiopts = {'MaxIterations','Algorithm','MaxFunctionEvaluations'};
options2 = resetoptions(options,multiopts);
fun = @(x)sqrt( (x(1)*cos(x(2))*sin(x(3))-X(i-1))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-1))^2 + (x(1)*cos(x(3))-Z(i-1))^2 );
lb = [2,0,0];
ub = [2,2*pi,2*pi];
x0 = [2,4.706221831,3.166020255];
A = [];
b = [];
Aeq = [];
beq = [];
nonlcon = @distance;
[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
X(i) = x(1)*cos(x(2))*sin(x(3));
Y(i) = x(1)*sin(x(2))*sin(x(3));
Z(i) = x(1)*cos(x(3));
ROH(i) = x(1);
THETA(i) = x(2);
PHI(i) = x(3);
elseif i==3
options = optimoptions('fmincon','MaxFunctionEvaluations',10000,'MaxIterations',5000);
multiopts = {'MaxIterations','Algorithm','MaxFunctionEvaluations'};
options2 = resetoptions(options,multiopts);
fun = @(x)( sqrt((x(1)*cos(x(2))*sin(x(3))-X(i-1))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-1))^2 + (x(1)*cos(x(3))-Z(i-1))^2) + sqrt((x(1)*cos(x(2))*sin(x(3))-X(i-2))^2 + (x(1)*sin(x(2))*sin(x(3))-Y(i-2))^2 + (x(1)*cos(x(3))-Z(i-2))^2) );
lb = [2,0,0];
ub = [2,2*pi,2*pi];
x0 = [2,3.743600534,2.108470198];
A = [];
b = [];
Aeq = [];
beq = [];
t = i;
nonlcon = @(x)distance2(x, X, Y, Z, t);
[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
X(i) = x(1)*cos(x(2))*sin(x(3));
Y(i) = x(1)*sin(x(2))*sin(x(3));
Z(i) = x(1)*cos(x(3));
ROH(i) = x(1);
THETA(i) = x(2);
PHI(i) = x(3);
end
end
3 Commenti
Risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!