I am trying to use a different data for my Validation and it is saying that: Training and validation responses must have the same categories. To view the categories of the res
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Ramon Miguel Legaspi
il 23 Nov 2021
Risposto: Philip Brown
il 25 Nov 2021
myfolder = 'C:\Users\Myname\Downloads\fall dataset\rgb';
dataDir = fullfile(myfolder);
imdir = fullfile(dataDir);
myfolder2 = 'C:\Users\Myname\Downloads\Validation';
dataDir2 = fullfile(myfolder2);
imdir2 = fullfile(dataDir2);
imds = imageDatastore(imdir, "IncludeSubfolders",true ,"LabelSource","foldernames");
imds2 = imageDatastore(imdir2,"IncludeSubfolders",true,"LabelSource","foldernames");
numTrainfiles =5172;
numValidfiles = 6598;
[imdsTrain] = splitEachLabel(imds,numTrainfiles,'randomized');
[imdsValidation] = splitEachLabel(imds2,numValidfiles,'randomized');
%definingarchitecture
inputSize = [ 240 320 3];
numClasses = numel(categories(imdsTrain.Labels));
numClasses2 = numel(categories(imdsValidation.Labels));
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%trainetwork
options = trainingOptions('sgdm', ...
'MaxEpochs',4, ...
'MiniBatchSize',64,...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
yvalidation = imdsValidation.Labels;
accuracy = mean(Ypred == yvalidation);
0 Commenti
Risposta accettata
Philip Brown
il 25 Nov 2021
It's likely that your training and validation folders contain different folder names, and those are being used as the class labels. For example, your training set has labels A, B, and C, but your validation set has labels A, B and D. This means your network never learns to classify into class D during training.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!