Error in ODE arguments

2 views (last 30 days)
Alexander Salas
Alexander Salas on 7 Dec 2021
Edited: Jan on 7 Dec 2021
Hello,
I am a newbie at MATLAB and I am trying to get a forcing function to work. I can get it to work without the F(t)/M but once I add it, it says error in ODE arguments:
clear
close all
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) Br*r + Brdot*r1;
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);(F(t)/M)*-C/M*[s(3) s(4)]'-K/M*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  4 Comments
Jan
Jan on 7 Dec 2021
This is no valid Matlab syntax:
M = [m1 0
0 Icg];
The blank line in the code is not allowed. Therefore I asked you to remove the blank lines.

Sign in to comment.

Accepted Answer

Alan Stevens
Alan Stevens on 7 Dec 2021
I suspect you mean like this (notice the way M divides, using the back-slash):
% Numerical solution of IVP
% M*xddot + C*xdot + K*x = F(t) with x(0) = x0 and xdot(0) = v0
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) (Br*r) + (Brdot*r1);
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]']; %%%%%%%%%%%%%%
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  1 Comment
Jan
Jan on 7 Dec 2021
A further simplification:
f = @(t,s) [s(3); s(4); M \ F(t) - M \ C * s(3:4) - M \ K * s(1:2)];

Sign in to comment.

More Answers (0)

Tags

Products


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by