Error in ODE arguments

1 visualizzazione (ultimi 30 giorni)
Alexander Salas
Alexander Salas il 7 Dic 2021
Modificato: Jan il 7 Dic 2021
Hello,
I am a newbie at MATLAB and I am trying to get a forcing function to work. I can get it to work without the F(t)/M but once I add it, it says error in ODE arguments:
clear
close all
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) Br*r + Brdot*r1;
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);(F(t)/M)*-C/M*[s(3) s(4)]'-K/M*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  4 Commenti
Jan
Jan il 7 Dic 2021
This is no valid Matlab syntax:
M = [m1 0
0 Icg];
The blank line in the code is not allowed. Therefore I asked you to remove the blank lines.

Accedi per commentare.

Risposta accettata

Alan Stevens
Alan Stevens il 7 Dic 2021
I suspect you mean like this (notice the way M divides, using the back-slash):
% Numerical solution of IVP
% M*xddot + C*xdot + K*x = F(t) with x(0) = x0 and xdot(0) = v0
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0
0 Icg];
C = [(c1+c2) (c1*l1-c2*l2)
(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2)
(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2
k1*l1 -k2*l2];
Brdot = [c1 c2
c1*l1 -c2*l2];
r = [.015 .015]';
r1 = [.086 .086]';
F = @(t) (Br*r) + (Brdot*r1);
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]']; %%%%%%%%%%%%%%
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('x1','x2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('v1','v2')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
  1 Commento
Jan
Jan il 7 Dic 2021
Modificato: Jan il 7 Dic 2021
A further simplification:
f = @(t,s) [s(3); s(4); M \ F(t) - M \ C * s(3:4) - M \ K * s(1:2)];

Accedi per commentare.

Più risposte (0)

Tag

Prodotti


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by