How can I solve an Optimization problem?
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hello. I have not used the optimization toolbox and I need your help. I have 3 functions that depends on λ, and an function μ that depends on the 3 previous functions (so μ also depends on λ). I need to find the minimum value of μ changing λ: how can I make it? what function should I consider? Thanks in advance.
syms lambda;
c= sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi))));
a= lambda*c;
b= sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi)));
Mu_1= acosd(abs(((c^2)+(b^2)-((d-a)^2))/(2*b*c)));
2 Commenti
Abolfazl Chaman Motlagh
il 13 Dic 2021
Modificato: Abolfazl Chaman Motlagh
il 13 Dic 2021
does lambda has any bound ? like an interval? because acosd hence Mu_1 become imaginary in larg numbers.
can you provide simple value for d ?
Risposte (2)
Abolfazl Chaman Motlagh
il 13 Dic 2021
you can use fmincon, this function minimize function in a constraint problem. but only constraint here is bounds of lambda. so other fields of function are empty ([]).
i use some sample number for needed variables.
d = 1;
psi = rand * 360;
fi = rand * 360;
c=@(lambda) (sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi)))));
a=@(lambda) (lambda*c(lambda));
b=@(lambda) (sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi))));
Mu_1=@(lambda) (acosd(abs(((c(lambda)^2)+(b(lambda)^2)-((d-a(lambda))^2))/(2*b(lambda)*c(lambda)))));
[Lambda_star,fval,exitflag,output]=fmincon(@(x) Mu_1(x),1,[],[],[],[],0,1);
disp(Lambda_star)
use fmincon documentation if you need more options for better convergence.it seems it reach best answer in my case : (in my code the answer changes everytime because psi and fi are random)
x = 0:1e-3:1;
for i=1:numel(x)
y(i) = Mu_1(x(i));
end
plot(x,y)
3 Commenti
Abolfazl Chaman Motlagh
il 13 Dic 2021
Yes it is. but are you sure you wrote the equations right? because it seems it is not what you're saying. lets plot the function over lambda:
d = 100;
psi = 30;
fi = 170;
c=@(lambda) (sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi)))));
a=@(lambda) (lambda*c(lambda));
b=@(lambda) (sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi))));
Mu_1=@(lambda) (acosd(abs(((c(lambda)^2)+(b(lambda)^2)-((d-a(lambda))^2))/(2*b(lambda)*c(lambda)))));
x = 0:1e-5:1;
for i=1:numel(x)
y(i) = Mu_1(x(i));
end
plot(x,y)
Juan Barrientos
il 13 Dic 2021
3 Commenti
Torsten
il 14 Dic 2021
Be careful with the objective function if the expression inside acosd becomes greater than 1. fminsearch will most probably stop if complex numbers are encountered during the optimization.
Vedere anche
Categorie
Scopri di più su Get Started with Optimization Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!