# Hello guys, i need help for estimating FAR from this formula can review my code please

2 views (last 30 days)
Ted Erdenekhuyag on 16 Dec 2021
Answered: Yazan on 16 Dec 2021
mu = 3;
sd = 1;
x= linspace(0,10)
y1 = 1/(2*pi*sd)*exp(-(x-mu).^2/(2*sd^2))
plot(x1,y1);
hold on
mu = 5;
sd = 1;
x2 = linspace(0,10);
y2 = 1/(2*pi*sd)*exp(-(x2-mu).^2/(2*sd^2));
plot(x2,y2);
hold on
plot([1 1]*4, ylim, '--r') % Draw A Red Vertical Line At ‘x=5’
hold off
ylabel('q(x)and p(x)')
xlabel('x')
hold on
x1=linspace(4,10)
trapz(x1,y1)
##### 2 CommentsShowHide 1 older comment
Ted Erdenekhuyag on 16 Dec 2021
sorry bro

Yazan on 16 Dec 2021
Have you noticed that the distributions defined in your codes are not Gaussian? See the demo below
mu = 3;
sigma = 1;
x = mu-6*sigma:0.05:mu+6*sigma;
dist = 1/sqrt(2*pi*sigma)*exp(-(x-mu).^2/(2*sigma^2));
figure, subplot(1,2,1), plot(x, dist);
x0 = 4;
hold on, xline(x0, 'LineStyle', '--', 'Color', 'r'); hold off
% If you have 'Statistics and Machine Learning Toolbox'
y1 = 1 - cdf('Normal', 4, mu, sigma);
end
% Otherwise:
x2 = 4:0.05:mu+6*sigma;
dist2 = 1/sqrt(2*pi*sigma)*exp(-(x2-mu).^2/(2*sigma^2));
subplot(1,2,2), plot(x2, dist2);
y2 = trapz(x2, dist2);
fprintf('Result using the function "cdf" is %g, and using "trapz" is %g', y1, y2)
else
fprintf('Result using the function "trapz" is %g', y2)
end
Result using the function "cdf" is 0.158655, and using "trapz" is 0.158706

### Categories

Find more on Numerical Integration and Differentiation in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by