Index exceeds the number of array elements (391).
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Turgut Ataseven
il 1 Gen 2022
Risposto: Image Analyst
il 1 Gen 2022
Hi all. That is my function:
function [Vtas_cl] = Velocities(H1,H2)
Vcl_1 = 335; % Standard calibrated airspeed [kt]
Vcl_2 = 172.3; % Standard calibrated airspeed [kt] -> [m/s] (To find the Mach transition altitude)
Vcl_2_in_knots = 335; % Standard calibrated airspeed [kt] (To find the result in knots, if altitude is between 10,000 ft and Mach transition altitude)
M_cl = 0.86; % Standard calibrated airspeed [kt]
K = 1.4; % Adiabatic index of air
R = 287.05287; % Real gas constant for air [m2/(K·s2)]
Bt = - 0.0065; % ISA temperature gradient with altitude below the tropopause [K/m]
T0 = 288.15; % Standard atmospheric temperature at MSL [K]
g0 = 9.80665; % Gravitational acceleration [m/s2]
a0= 340.294; % Speed of Sound [m/s]
Vd_CL1 = 5; % Climb speed increment below 1500 ft (jet)
Vd_CL2 = 10; % Climb speed increment below 3000 ft (jet)
Vd_CL3 = 30; % Climb speed increment below 4000 ft (jet)
Vd_CL4 = 60; % Climb speed increment below 5000 ft (jet)
Vd_CL5 = 80; % Climb speed increment below 6000 ft (jet)
CV_min = 1.3; % Minimum speed coefficient
Vstall_TO = .14200E+03; % Stall speed at take-off [KCAS]
CAS_climb = Vcl_2;
Mach_climb = M_cl;
delta_trans = (((1+((K-1)/2)*(CAS_climb/a0)^2)^(K/(K-1)))-1)/(((1+(K-1)/2*Mach_climb^2)^(K/(K-1)))-1); % Pressure ratio at the transition altitude
teta_trans = delta_trans ^ (-Bt*R/g0); % Temperature ratio at the transition altitude
H_p_trans_climb = (1000/0.348/6.5)*(T0*(1-teta_trans)); % Transition altitude for climb [ft]
H_climb = H1:H2;
for k1 = 1:length(H_climb)
if (0<=H_climb(k1)&&H_climb(k1)<=1499)
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL1;
elseif (1500<=H_climb(k1)&&H_climb(k1)<=2999)
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL2;
elseif (3000<=H_climb(k1)&&H_climb(k1)<=3999)
Vnom_climb_jet (k1)= CV_min * Vstall_TO + Vd_CL3;
elseif (4000<=H_climb(k1)&&H_climb(k1)<=4999)
Vnom_climb_jet (k1)= CV_min * Vstall_TO + Vd_CL4;
elseif (5000<=H_climb(k1)&&H_climb(k1)<=5999)
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL5;
elseif (6000<=H_climb(k1)&&H_climb(k1)<=9999)
Vnom_climb_jet (k1)= min(Vcl_1,250);
elseif (10000<=H_climb(k1)&&H_climb(k1)<=H_p_trans_climb)
Vnom_climb_jet(k1) = Vcl_2_in_knots;
elseif (H_p_trans_climb<H_climb(k1))
Vnom_climb_jet(k1) = M_cl;
end
Vcas_cl(k1) = Vnom_climb_jet(k1)* 0.514; % [kn] -> [m/s] line 60 %%%%%%%%%%%%%%%%%%%%%%%%%%%
H_climb (k1)= H_climb(k1) * 0.3048; % [feet] -> [m]
K = 1.4; % Adiabatic index of air
R = 287.05287; % Real gas constant for air [m2/(K·s2)]
Bt = - 0.0065; % ISA temperature gradient with altitude below the tropopause [K/m]
deltaT = 0; % Value of the real temperature T in ISA conditions [K]
T0 = 288.15; % Standard atmospheric temperature at MSL [K]
P0 = 101325; % Standard atmospheric pressure at MSL [Pa]
g0 = 9.80665; % Gravitational acceleration [m/s2]
p0 = 1.225; % Standard atmospheric density at MSL [kg/m3]
visc = (K-1)./K;
T(k1) = T0 + deltaT + Bt * H_climb(k1); % Temperature [K]
P (k1)= P0*((T(k1)-deltaT)/T0).^((-g0)/(Bt*R)); % Pressure [Pa]
p (k1)= P(k1) ./ (R*T(k1)); % Density [kg/m^3]
Vtas_cl(k1) = (2*P(k1)/visc/p(k1)*((1 + P0/P(k1)*((1 + visc*p0*Vcas_cl(k1)*Vcas_cl(k1)/2/P0).^(1/visc)-1)).^(visc)-1)).^(1/2); % True Air Speed [m/s]
end
end
Whenever I try to run the code like this:
>> [Vtas_cl] =Velocities(3608.9,5249.3)
Index exceeds the number of array elements (391).
Error in Velocities (line 60)
Vcas_cl(k1) = Vnom_climb_jet(k1)* 0.514; % [kn] -> [m/s]
Another condition:
>> [Vtas_cl] =Velocities(3608.9,3999.9)
Index exceeds the number of array elements (391).
Error in Velocities (line 60)
Vcas_cl(k1) = Vnom_climb_jet(k1)* 0.514; % [kn] -> [m/s]
And another one:
>> [Vtas_cl] =Velocities(3608.9,3999.8)
Vtas_cl =
1.0e+02 *
Columns 1 through 6
1.161544478045788 1.161561284482268 1.161578091258861 1.161594898375583 1.161611705832432 1.161628513629424
Columns 7 through 12
1.161645321766563 1.161662130243859 1.161678939061322 1.161695748218955 1.161712557716770 1.161729367554776
I get the results from column 1 through column 391. What should I change to fix the code?
Thanks.
3 Commenti
Stephen23
il 1 Gen 2022
Modificato: Stephen23
il 1 Gen 2022
@Turgut Ataseven: your conditions ares still too complex, which makes your code harder to understand and more liable to bugs (as your question demonstrates). As I wrote earlier, check each conditions just once, not duplicated as you are doing. For example:
if 0<=H_climb(k1) && H_climb(k1)<1500
..
elseif H_climb(k1)<3000 % do NOT check 1500<=H_climb(k1) here, the previous condition ensures this!
..
elseif H_climb(k1)<4000 % do NOT check 3000<=H_climb(k1) here, the previous condition ensures this!
..
etc
end
Your code is still fragile as you do not have an ELSE or a preallocated array.
Risposta accettata
Image Analyst
il 1 Gen 2022
This works. I preallocated the array and fixed the if statements, and put in an else to catch unhandled "if" conditions (never encountered any though).
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
close all; % Close all figures (except those of imtool.)
clearvars;
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
% Call the function
Vtas_cl1 = Velocities(3608.9,5249.3)
Vtas_cl2 = Velocities(3608.9,3999.9)
% Define the function
function Vtas_cl = Velocities(H1,H2)
Vcl_1 = 335; % Standard calibrated airspeed [kt]
Vcl_2 = 172.3; % Standard calibrated airspeed [kt] -> [m/s] (To find the Mach transition altitude)
Vcl_2_in_knots = 335; % Standard calibrated airspeed [kt] (To find the result in knots, if altitude is between 10,000 ft and Mach transition altitude)
M_cl = 0.86; % Standard calibrated airspeed [kt]
K = 1.4; % Adiabatic index of air
R = 287.05287; % Real gas constant for air [m2/(K·s2)]
Bt = - 0.0065; % ISA temperature gradient with altitude below the tropopause [K/m]
T0 = 288.15; % Standard atmospheric temperature at MSL [K]
g0 = 9.80665; % Gravitational acceleration [m/s2]
a0= 340.294; % Speed of Sound [m/s]
Vd_CL1 = 5; % Climb speed increment below 1500 ft (jet)
Vd_CL2 = 10; % Climb speed increment below 3000 ft (jet)
Vd_CL3 = 30; % Climb speed increment below 4000 ft (jet)
Vd_CL4 = 60; % Climb speed increment below 5000 ft (jet)
Vd_CL5 = 80; % Climb speed increment below 6000 ft (jet)
CV_min = 1.3; % Minimum speed coefficient
Vstall_TO = .14200E+03; % Stall speed at take-off [KCAS]
CAS_climb = Vcl_2;
Mach_climb = M_cl;
delta_trans = (((1+((K-1)/2)*(CAS_climb/a0)^2)^(K/(K-1)))-1)/(((1+(K-1)/2*Mach_climb^2)^(K/(K-1)))-1); % Pressure ratio at the transition altitude
teta_trans = delta_trans ^ (-Bt*R/g0); % Temperature ratio at the transition altitude
H_p_trans_climb = (1000/0.348/6.5)*(T0*(1-teta_trans)); % Transition altitude for climb [ft]
H_climb = H1:H2;
% Preallocate array.
Vnom_climb_jet = zeros(1, length(H_climb));
for k1 = 1:length(H_climb)
if (0 <= H_climb(k1)&&H_climb(k1) <= 1499)
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL1;
elseif H_climb(k1) <= 2999
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL2;
elseif H_climb(k1) <= 3999
Vnom_climb_jet (k1)= CV_min * Vstall_TO + Vd_CL3;
elseif H_climb(k1) <= 4999
Vnom_climb_jet (k1)= CV_min * Vstall_TO + Vd_CL4;
elseif H_climb(k1) <= 5999
Vnom_climb_jet(k1) = CV_min * Vstall_TO + Vd_CL5;
elseif H_climb(k1) <= 9999
Vnom_climb_jet (k1)= min(Vcl_1,250);
elseif H_climb(k1) <= H_p_trans_climb
Vnom_climb_jet(k1) = Vcl_2_in_knots;
elseif H_p_trans_climb<H_climb(k1)
Vnom_climb_jet(k1) = M_cl;
else
uiwait(errordlg('Unhandled if condition'))
end
Vcas_cl(k1) = Vnom_climb_jet(k1)* 0.514; % [kn] -> [m/s] line 60 %%%%%%%%%%%%%%%%%%%%%%%%%%%
H_climb (k1)= H_climb(k1) * 0.3048; % [feet] -> [m]
K = 1.4; % Adiabatic index of air
R = 287.05287; % Real gas constant for air [m2/(K·s2)]
Bt = - 0.0065; % ISA temperature gradient with altitude below the tropopause [K/m]
deltaT = 0; % Value of the real temperature T in ISA conditions [K]
T0 = 288.15; % Standard atmospheric temperature at MSL [K]
P0 = 101325; % Standard atmospheric pressure at MSL [Pa]
g0 = 9.80665; % Gravitational acceleration [m/s2]
p0 = 1.225; % Standard atmospheric density at MSL [kg/m3]
visc = (K-1)./K;
T(k1) = T0 + deltaT + Bt * H_climb(k1); % Temperature [K]
P (k1)= P0*((T(k1)-deltaT)/T0).^((-g0)/(Bt*R)); % Pressure [Pa]
p (k1)= P(k1) ./ (R*T(k1)); % Density [kg/m^3]
Vtas_cl(k1) = (2*P(k1)/visc/p(k1)*((1 + P0/P(k1)*((1 + visc*p0*Vcas_cl(k1)*Vcas_cl(k1)/2/P0).^(1/visc)-1)).^(visc)-1)).^(1/2); % True Air Speed [m/s]
end
end
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Matrix Indexing in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!