I have tried Runge Kutta method on this coupled nonlinear ode and get the error respect to the matrix dimension. Please help me with this.
22 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
% Define spatial domain
Ly = 2; % Length of domain
Lz = 1;
N = 200; % Number of discretization points
M = 200;
dy = Ly/N;
dz = Lz/M;
y = -1; % Define x domain % for fixed values of y
z = 0:dz:Lz;
[Y,Z] = meshgrid(y,z);
% Define discrete wavenumbers
eta = (2*pi/Ly)*[-N/2:N/2];
eta = fftshift(eta'); % Re-order fft wavenumbers
jeta = (2*pi/Lz)*[-M/2:M/2];
jeta = fftshift(jeta'); % Re-order fft wavenumbers
[Eta,Jeta] = meshgrid(eta,jeta);
%% Time domain %%
t(1) = 0; dt = 0.05; tf = 10; L = ceil(tf/dt)+1;
%% function handle %%
f = @(t,F,G) (-g1.*J-F.*((F).*(2.*pi.*1i.*jeta))-((nu+nu_t).*(jeta.^2+eta.^2).*4.*pi.^2)-(nu_t.*4.*pi.^2.*jeta.*eta)-(G.*2.*pi.*1i.*eta));
g = @(t,F,G) (-g1.*J.*P-G.*((G).*(2.*pi.*1i.*eta))-((nu+nu_t).*(jeta.^2+eta.^2).*4.*pi.^2)-(nu_t.*4.*pi.^2.*jeta.*eta)-(F.*2.*pi.*1i.*jeta));
%% Initial condition %%
F(1) = 0; G(1) = 0;
%% Main calculation %%
for i = 1:L+1
t(i+1) = t(i)+dt
k1F = f(t(i), F(i), G(i));
k1G = g(t(i), F(i), G(i));
k2F = f(t(i)+dt./2,F(i)+dt./2.*k1F,G(i)+dt./2.*k1G);
k2G = g(t(i)+dt./2,F(i)+dt./2.*k1F,G(i)+dt./2.*k1G);
k3F = f(t(i)+dt./2,F(i)+dt./2.*k2F,G(i)+dt./2.*k2G);
k3G = g(t(i)+dt./2,F(i)+dt./2.*k2F,G(i)+dt./2.*k2G);
k4F = f(t(i)+dt, F(i)+dt.*k3F, G(i)+dt.*k3G);
k4G = g(t(i)+dt, F(i)+dt.*k3F, G(i)+dt.*k3G);
F(i+1) = F(i) + (dt./6).*(k1F + 2.*k2F + 2.*k3F + k4F);
G(i+1) = G(i) + (dt./6).*(k1G + 2.*k2G + 2.*k3G + k4G)
end
1 Commento
Torsten
il 6 Gen 2022
We can't check your code because several variables in the definition of f and g are undefined.
Risposte (0)
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!