Convolution Neural network for regression problems

18 visualizzazioni (ultimi 30 giorni)
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
  1 Commento
KSSV
KSSV il 10 Gen 2022
Modificato: KSSV il 10 Gen 2022
You can use NN toolbox right? Attach your data and tell us about your data, lets give a try to help you.

Accedi per commentare.

Risposta accettata

yanqi liu
yanqi liu il 11 Gen 2022
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
  3 Commenti
Jahetbe
Jahetbe il 10 Feb 2022
Thank you for your answered.
Could you please help me to improve the accuracy of model?
I cannot find any optimum stduture to find my data not only when considered data for training and validations, but also when considered all of them for training.
Regards,
yanqi liu
yanqi liu il 10 Feb 2022
yes,sir,just send data to me

Accedi per commentare.

Più risposte (1)

Jahetbe
Jahetbe il 10 Gen 2022
Dear @KSSV
Thank you for your response.
I want to use CNN to solve my problem.
My data is as follows.
Inputs = [ x11 x12 x13 x14
x21 x22 x23 x24
. . . .
xN1 xN2 XN3 XN4]
Outputs = [ Y11
Y21
.
.
.
.
YN1 ]
Wher N is the number of samples (i.e., 78000)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by