fitting implicit non-linear equation
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Dear ALL, I have the data points below, defined by the variables X1,X2,X3,X4:
X1 X2 X3 X4
3.5E-4 0 0.99965 1
4.08935E-4 0.00138 0.99821 0.85588
0.00114 0.03473 0.96413 0.30777
6.43932E-4 0.00989 0.98947 0.54354
0.00145 0.04977 0.94878 0.24193
0.0019 0.08999 0.90811 0.18414
0.00268 0.14986 0.84745 0.13042
0.00268 0.14998 0.84734 0.13056
0.00465 0.2488 0.74655 0.07521
I need to fit these data points using a function of the type
a*b*ln(X4)=W1*X2*(1-X1)+W2*X3*(1-X1)-W3*X2*X3+W4*X2*X3*(1-2*X1)
where a,b are constants (8.31 and 973), and W1,W2,W3,W4 are adjustable parameters. Could you indicate me how to do that? Thank you in advance, Matthieu
0 Commenti
Risposte (2)
Torsten
il 25 Nov 2014
Use lsqnonlin with f(i) defined as
f(i) = a*b*ln(X4(i))-(W1*X2(i)*(1-X1(i))+W2*X3*(1-X1(i))-W3*X2(i)*X3(i)+W4*X2(i)*X3(i)*(1-2*X1(i)))
Best wishes
Torsten.
2 Commenti
Torsten
il 26 Nov 2014
As I see now, your function is linear in the unknown Parameters.
So you can determine W simply by
A=zeros(9,4);
B=zeros(9);
for ii=1:9
A(ii,1)=X2(ii)*(1-X1(ii));
A(ii,2)=X3(ii)*(1-X1(ii));
A(ii,3)=-X2(ii)*X3(ii);
A(ii,4)=X2(ii)*X3(ii)*(1-2*X1(ii));
B(ii)=a*b*log(X4(ii));
end
W=A\B;
Best wishes
Torsten.
arich82
il 26 Nov 2014
I question the physicality of your fitting equation:
Since you have a log on the left-hand side, and your data includes X4(1) == 1 and X2(1) == 0 exactly, it seems like W2 should necessarily be 0 for the equation to remain valid...
In your data, it seems like X3 is very nearly (1 - X2). If you use this substitution, you can plot your data (and your fit) with plot3.
Feel free to play with the code below. I used the backslash operator for fitting, which I believe results in a least-squares fit via QR (but don't hold me to that):
First, some preliminary definitions.
%%%%
%%data
%%%%
clear; close all; clc;
data = [...
0.00035, 0, 0.99965, 1; ...
0.000408935, 0.00138, 0.99821, 0.85588; ... % swapped rows
0.000643932, 0.00989, 0.98947, 0.54354; ... % swapped rows
0.00114, 0.03473, 0.96413, 0.30777; ...
0.00145, 0.04977, 0.94878, 0.24193; ...
0.0019, 0.08999, 0.90811, 0.18414; ...
0.00268, 0.14986, 0.84745, 0.13042; ...
0.00268, 0.14998, 0.84734, 0.13056; ...
0.00465, 0.2488, 0.74655, 0.07521; ...
];
% Note: swapping rows 3 & 4 dowsn't affect the fitting, but makes
% ploting lines cleaner
X1 = data(:, 1);
X2 = data(:, 2);
X3 = data(:, 3);
X4 = data(:, 4);
a = 8.31;
b = 973;
% re-parameterize (unnecessary, but might simplify some later algebra)
T = a*b*log(X4);
X = X2;
Y = 1 - X1;
Z = X3;
% Note: Z = X3 ~~ (1 - X2) == (1 - X)
For the first fit, we'll assume X3 = 1 - X1
%%%%
%%w: fit assuming X3 = (1 - X2), using all four w's
%%%%
% T = w2*Y + (w1 - w2 + 2*w4)*X.*Y + (w3 + w4)*(X.^2 - X) - 2*w4*X.^2.*Y;
M = [Y, X.*Y, X.^2 - X, X.^2.*Y];
m = M\T;
Tm = M*m;
X4m = exp(Tm/a/b);
w(4) = m(4)/2;
w(3) = m(3) - w(4);
w(2) = m(1);
w(1) = m(2) + w(2) - 2*w(4);
w = w(:);
err_m = (X4 - X4m)./X4m;
w
err_m
Now let's see what happens if we enforce the (perhaps more physical) constraint W2 = 0
%%%%
%%w2: fit assuming X3 = (1 - X2), using w2 = 0
%%%%
% T = (w1 + 2*w4)*X.*Y + (w3 + w4)*(X.^2 - X) - 2*w4*X.^2.*Y;
M = [X.*Y, X.^2 - X, X.^2.*Y];
m2 = M\T;
Tm2 = M*m2;
X4m2 = exp(Tm2/a/b);
w2(4) = m(3)/2;
w2(3) = m(2) - w2(4);
w2(2) = 0;
w2(1) = m(2) - 2*w2(4);
w2 = w2(:);
err_m2 = (X4 - X4m2)./X4m2;
w2
err_m2
Now lets use the full equation (no assumption on X3)
%%%%
%%W: fit using all four w's (no assumptions)
%%%%
%
% TW = ...
% W(1)*X2.*(1 - X1) ...
% + W(2)*X3.*(1 - X1) ...
% - W(3)*X2.*X3 ...
% + W(4)*X2.*X3.*(1 - 2*X1);
M = [X2.*(1 - X1), X3.*(1 - X1), -X2.*X3, X2.*X3.*(1 - 2*X1)];
W = M\(a*b*log(X4));
TW = M*W;
X4W = exp(TW/a/b);
err_W = (X4 - X4W)./X4W;
W
err_W
And finally, using W2 == 0 (no assumption on X3)
%%%%
%%W: fit using w2 = 0 (no additional assumptions)
%%%%
M = [X2.*(1 - X1), -X2.*X3, X2.*X3.*(1 - 2*X1)];
W2 = M\(a*b*log(X4));
TW2 = M*W2;
X4W2 = exp(TW2/a/b);
err_W2 = (X4 - X4W2)./X4W2;
W2 = [W2(1), 0, W2(2), W2(3)].';
W2
err_W2
results
%%%%
%%compare results
%%%%
compare_W = [w, w2, W, W2];
compare_W
compare_err = 100*[err_m, err_m2, err_W, err_W2];
compare_err
hf = figure('WindowStyle', 'docked');
ha = axes;
hp = plot3(X1, X2, X4, X1, X2, X4m, X1, X2, X4m2, X1, X2, X4W, X1, X2, X4W2)
xlabel('X1')
ylabel('X2')
zlabel('X4')
legend('X4', 'X4m', 'X4m2', 'X4W', 'X4W2')
grid on;
title('compare fits')
You can use your judgment to see if this %error is reason able over the region of interest.
>> compare_W =
1.0e+08 *
3.813510730697298 -0.000491562357117 0.025845576531701 0.032553401777266
-0.000018277710575 0 -0.000018555355233 0
2.867011340403814 0.959509492664202 1.017723304845835 1.273754444212918
-0.947009230361176 0.960001055021319 0.991441774206119 1.240781494391939
>> compare_err =
25.3541 0 25.7751 0
9.5807 -12.2780 9.8547 -12.3620
-18.5631 -32.9458 -18.6725 -33.2918
-19.8587 -26.6898 -20.2522 -27.2932
-5.6106 -6.3826 -5.7995 -6.7560
19.3484 26.9156 19.2132 26.7386
0.7148 2.1690 0.9361 2.5826
0.2742 1.5628 0.5416 2.0342
-1.9625 -3.4741 -2.0987 -3.7206
0 Commenti
Vedere anche
Categorie
Scopri di più su Interpolation in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!