Could anyone help me with this warning please?
7 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
This is my code :
function RunLogOscilNumeric3
k =10;
p0 =0.1;
t =(0:0.01:10000);
omega = 1;
N0 = 1;
[t,p]=ode23(@logOscilnumeric3,t,p0,[],omega,k,N0);
Pmax = max(p)
Pmean = mean(p)
figure(1)
plot(t,p)
title('The plot of the system with time')
xlabel ('Time')
ylabel ('The system' )
1;
% function dpdt = logOscilnumeric3(t,p,omega,k,N0)
% dpdt = N0*p - (N0*sin(omega*t)*p.^2/k);
% end
Notes: 1- Warning: Failure at t=5.060889e+00. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (1.421085e-14) at time t.
2- I tried to change the ode solver ,,but I still got this warning.
3- I want to solve this system for the specific values of the parameters and time'' I do not want to change those at all'' ,, because I am trying to solve different systems for the same parameters and time vector.
What should I do please?
Thanks in advance.
0 Commenti
Risposta accettata
Torsten
il 5 Dic 2014
The analytical solution for your ODE is given by
p(t)=20*exp(t)/(exp(t)*(cos(t)-sin(t))-201)
This function has a singularity between t=5 and t=5.5.
Best wishes
Torsten.
7 Commenti
Torsten
il 5 Gen 2015
Try MATLAB's dsolve.
If an explicit solution can not be found, you will have to solve the equation numerically for given values of N0, omega and k.
Best wishes
Torsten.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!