Algorithm for Fractional power calculation

9 views (last 30 days)
Hi
1. fractional base is no problem with current implementation.
2. To support fractional exponents, get the n-th root for any given number b. How to implement algorithm to get a numerical approximation ?
3. Current approach is inefficient, because it loops e times
b = [-32:32]; % example input values
e = [-3:3]; % example input values but doesn't support fraction's
power_function(b,e)
p = 1;
if e < 0
e = abs(e);
multiplier = 1/b;
else
multiplier = b;
end
for k = 1:e
p(:) = p * multiplier; % n-th root for any given number
end

Answers (1)

Alan Stevens
Alan Stevens on 28 Feb 2022
How about using the Newton-Raphson algorithm. Here's the basic idea:
% x^n = b
% Let f(x) = x^n - b
% dfdx(x) = n*x^(n-1)
%
% Use Newton-Raphson iteration
% x1 = initial guess
% err = 1;
% while err > tol
% x = x1 - f(x1)/dfdx(x1);
% err = abs(x - x1);
% x1 = x
% end
  13 Comments

Sign in to comment.

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by