Vandermonde-like matrix
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
For any given number x, what's the easiest way to generate the following square matrix without using any loop:
0 x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0)
x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5)
x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0)
x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5)
x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5) x^(-4.0)
Here, in this example, I set the size of the matrix to be 5, but it has to be generated for any integer n.
Notice the matrix does look like the Vandermonde matrix, hence the idea of using repmat and cumprod commands..
Thanks in advance !
0 Commenti
Risposta accettata
KSSV
il 3 Mar 2022
p = -(0:0.5:4) ; % power values
n = 5 ; % n value
ind1 = bsxfun(@plus, (1 : n), (0 : numel(p) - n).'); % make moving window indices
p = p(ind1) % power values
x = rand ; % your x
V = x.^p % what you wanted
Più risposte (1)
John D'Errico
il 3 Mar 2022
The easiest way? Probably this line: (in R2016b or later)
x.^(((0:-1:1-n)' + (0:-1:1-n))/2)
If you want to use two lines of code, then it looks simpler yet.
N = (0:-1:1-n)/2;
x.^(N' + N)
Easrlier releases than R2016b would use bsxfun.
Vedere anche
Categorie
Scopri di più su Creating and Concatenating Matrices in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!