fit a curve to data without using curve fitting toolbox
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Anqi Li
il 12 Dic 2014
Commentato: Andreas Goser
il 12 Dic 2014
I have a set of data=[x1 x2] which looks periodical. I want to fit them into this Fourier transform equation:
x2 = A1 + A2.*sin(x1) + A3.*cos(x1) + A4.*sin(2*x1) + A5.*cos(2*x1)
by using least squares optimisation to know the optimum A = [A1;A2;A3;A4;A5]
I don't have curve fitting toolbox. please let me know how to do it without using toolbox.
1 Commento
Andreas Goser
il 12 Dic 2014
I see you already have answers, but I wonder why you do not have the Curve Fitting Toolbox. Is the information about the university you work at current (your profile)?
Risposta accettata
Mohammad Abouali
il 12 Dic 2014
Modificato: Mohammad Abouali
il 12 Dic 2014
Assuming your X1 and X2 are vector, i.e. size(x1)=size(x2)=[N 1] and N>=5 (since there are 5 coefficients, A1 to A5); then
C=[ones(numel(x1),1) sin(x1(:)) cos(x1(:)) sin(2*x1(:)) cos(2*x1(:))];
A=(C'*C)\(C'*x2(:));
or even:
A=C\x2(:);
6 Commenti
Mohammad Abouali
il 12 Dic 2014
so x2(:) makes sure that your data is a column vector data, i.e. size(x2(:))=[N 1]. I just wanted to be sure that it is not a row data but a vertical column vector. If it is already a column vector you can just replace it with X2 and drop (:).
A=C\x2 conceptually is pretty much solving C*A=x2; Your system of equations can be written as matrix C (the one with sine and cosine functions) multiplied by the unknown column vector, and x2 is your known variable vectors. once you do A=C\x2 pretty much you are solving the system of linear-equations. This operation is known as mldivide. If you want to know more about it go to mldivide help section, there you can find more information on how to use this.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Descriptive Statistics in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!