Retrain Machine Learning Model On New Data

8 visualizzazioni (ultimi 30 giorni)
Sinan Islam
Sinan Islam il 6 Apr 2022
Commentato: Ryan Thomson il 11 Gen 2024
Hello,
I have trained an SVM model using fitcsvm and saved it to disk.
Now I have new data that were never used by the model before.
How can I retrain the saved model over the new data?
Please, note this is just a simple model not a real time streaming model update.
Thank you!

Risposte (1)

the cyclist
the cyclist il 11 Gen 2024
I don't really understand the question. There is no such as "re-training" an existing model. You can do one of two things:
  1. Train the model on the new data
  2. Make predictions from the old model on the new data
In the first case, just run fitcsvm on the new data, and you have a new model.
In the second case, use the the predict() method of the old model on the new data.
Or maybe I'm misunderstanding something.
  1 Commento
Ryan Thomson
Ryan Thomson il 11 Gen 2024
Guess what I am looking for is a way to do a version of transfer learning for deployed SVMs.
Say I have deployed a SVM as part of my product to an enduser, the enduser has the means to capture their own training data and access to the saved source SVM, and I want to allow the enduser to train (only on the new customer training data) the source SVM into a target SVM now customized for the enduser's system (without access to the original traning set and without losing previous knowlage). Is this possible with SVMs in Matlab? Maybe a version of incremental learning?

Accedi per commentare.

Categorie

Scopri di più su Image Data Workflows in Help Center e File Exchange

Prodotti


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by