Estimate GARCH(4,1) using estimate: Parameter GARCH{2} is missing

3 visualizzazioni (ultimi 30 giorni)
Hi,
I want to fit an AR(1) Model to a time series of returns (x) and the variance process follows a GARCH(4,1) model.
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x)
returns:
ARIMA(1,0,0) Model:
--------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant -0.000754276 0.000531875 -1.41815
AR{1} 0.223266 0.0279149 7.99808
GARCH(4,1) Conditional Variance Model:
----------------------------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 1.77228e-05 3.59061e-06 4.93587
GARCH{1} 0.55604 0.113503 4.89891
GARCH{3} 0.193253 0.193158 1.00049
GARCH{4} 0.065569 0.0953147 0.687922
ARCH{1} 0.176294 0.0259334 6.79798
Why is the parameter GARCH{2} missing in the table? Is it because it may be very unsignificant? I mean the parameters GARCH{3} and GARCH{4} are pretty unsignificant as well. Or are there too few observations? The time series x is 1545 observations long. When I limit the estimation to a fit period of just 1000 observations via
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x(1:1000))
it returns:
ARIMA(1,0,0) Model:
--------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 0.000184079 0.000783618 0.234909
AR{1} 0.234824 0.0336974 6.9686
GARCH(1,1) Conditional Variance Model:
----------------------------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 4.899e-05 1.53734e-05 3.18668
GARCH{1} 0.796332 0.279077 2.85345
ARCH{1} 0.157239 0.0455136 3.45478
Now the result is a GARCH(1,1) model, allthough I defined the model to be a GARCH(4,1).
Using Econometrics Toolbox for MATLAB R2014a.
Thanks in Advance!

Risposta accettata

Karl-Martin
Karl-Martin il 10 Gen 2015
Nevermind, I found the solution. In the 'garch.m' function of the Econometrics toolbox it is stated:
% o The coefficients GARCH and ARCH are each associated with an
% underlying lag operator polynomial and subject to a near-zero
% tolerance exclusion test. That is, each coefficient is compared to
% the default zero tolerance 1e-12, and is included in the model only
% if the magnitude is greater than 1e-12; if the coefficient magnitude
% is less than or equal to 1e-12, then it is sufficiently close to zero
% and excluded from the model. See LagOp for additional details.
So the parameters are too close to zero and therefore excluded from the model...

Più risposte (0)

Categorie

Scopri di più su Conditional Variance Models in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by