Can regression network training and testing of images with different sizes?

3 visualizzazioni (ultimi 30 giorni)
I trained a simple regression network to perform the image conversion task. In the training session, the size of the input image was set to a fixed value of 128*128. But in the test session, the input size is 1000*1000. The code is shown below:
inputSize = [128 128 1];
filterSize = 3;
numFilters = 128;
layers = [
imageInputLayer(inputSize,'Normalization','rescale-zero-one','Min',-pi,'Max',pi)
convolution2dLayer(filterSize,128,'DilationFactor',1,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(filterSize,128,'DilationFactor',2,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(filterSize,128,'DilationFactor',4,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(1,1)
regressionLayer]
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',100, ...
'MiniBatchSize',30, ...
'Verbose',true,...
'ValidationFrequency',30, ...
'ValidationPatience',inf, ...
'OutputNetwork','best-validation-loss', ...
'ValidationData',{wrapVal,pVal});
[simplenet,info] = trainNetwork(wrapTrain,pTrain,layers,options);
An error message appears after the above code is run.
错误使用 DAGNetwork/predict
输入大小不正确。输入图像的大小必须为 [128 128 1]。
出错 SeriesNetwork/predict (第 302 行)
Y = this.UnderlyingDAGNetwork.predict(X, varargin{:});

Risposte (0)

Categorie

Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!