# Is a grid search for the global minima helpful for my optimization?

2 visualizzazioni (ultimi 30 giorni)
Shaily_T il 10 Mag 2022
Commentato: Jan il 10 Mag 2022
I have some series of data taken at different frequency domains and I am trying to fit each series of data to a nonlinear model. The main problem that I have is I do get inconsistent results for some of data series. The data I have is a nonlinear system with multiple distinct peaks. And the fitting function is essentially a fraction where I do have multiplication of two exponential functions in both nominator and denominator and one of the exponential functions are an exponential function of a series of Gaussian functions where the fitting parameters are the amplitude and width of each Gaussian and the distance between the Gaussians and the last fitting parameter is the argument of the other one of the two exponential functions. I tried 'Levenberg-Marquardt' algorithm in the curve fitting toolbox. But the result is changing each time I change the startpoints. Also, I do have 4 fitting parameters and everytime automatically it assumes two of them are fixed at startpoint and only fits the other two. So, I thought it would be helpful to see the result of globalsearch and multistart in the optimization toolbox and I tried it using different solvers and algorithms. However, I get close or similar results as the local solvers even by using multistart and globalsearch. One suggestion was to do a grid search for the global minima and so first I tried to plot the function that I want to optimize vs two of my fitting parameters (so, the other two are constant) to have a sense of what is going on. I have attached the obtained surfplot (SSE is the function to be minimized, a, d, sigma are parameters that I want to obtain by minimization). I am wondering do you think if a grid search would be helpful in my case?
##### 2 CommentiMostra 1 commento meno recenteNascondi 1 commento meno recente
Jan il 10 Mag 2022
"And the fitting function is essentially a fraction where I do have multiplication of two exponential functions in both nominator and denominator and one of the exponential functions are an exponential function of a series of Gaussian functions where the fitting parameters are the amplitude and width of each Gaussian and the distance between the Gaussians and the last fitting parameter is the argument of the other one of the two exponential functions."
WOW! This is pure lyric.
I cannot open fig files currently, so I have no idea like your function looks like. But if it is chaotic (e.g. as the Manelbrot-set) a local optimization cannot be "successful". Of course try a grid search. You have to check, if this is useful and successful. There is no way to predict this reliably.

Accedi per commentare.

### Categorie

Scopri di più su Solver Outputs and Iterative Display in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!