why I get imaginary part using solve function
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Sarah Alhabbas
il 14 Giu 2022
Commentato: Walter Roberson
il 14 Giu 2022
I am trying to use the solve function but somehow I keep getting more than one answer with imaginary parts and negative numbers

the correct answer should be the second answer = 0.85
1 Commento
Torsten
il 14 Giu 2022
Modificato: Torsten
il 14 Giu 2022
If you multiply eq4 by (1+y*m4^2)^2, you get a polynomial equation of degree 4 in m4. This equation has 4 zeros (which are listed in the output of vpasolve). Two of them are purely imaginary, two of them are real. One of the solution is the one you want (the second one).
Risposta accettata
Walter Roberson
il 14 Giu 2022
You have an expression of the form f(x^4)/g(x^2) + b = 0
Multiply through by g(x^2) (assuming nonzero) to get
f(x^4) + b*g(x^2) = 0
collect x terms to get a polynomial in x^4.
Solve the degree 4 polynomial, getting four solutions.
Therefore "the answer" is all four solutions, not just a single solution.
If you have constraints on the outputs, such as being real valued, then filter the results.
3 Commenti
Torsten
il 14 Giu 2022
y = 1.4;
to3 = 300;
t_star = 400;
syms m4
eq4 = (((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2) - to3/t_star;
m4 = vpasolve(eq4,m4);
m4 = m4(abs(imag(m4)) < eps & real(m4) > 0)
Walter Roberson
il 14 Giu 2022
y = 1.4;
to3 = 300;
t_star = 400;
syms m4 positive
eq4 = (((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2) - to3/t_star;
m4 = solve(eq4,m4);
m4
vpa(m4)
Più risposte (1)
David Hill
il 14 Giu 2022
y=1.4;
to3=300;
t_star=400;
eq4=@(m4)(((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2)-to3/t_star;
m_4=fzero(eq4,.8)
0 Commenti
Vedere anche
Categorie
Scopri di più su Linear Algebra in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
