generate an independent seed with a fixed number

2 visualizzazioni (ultimi 30 giorni)
Hi to all,
I am simulating a simple problem in Matlab and optimizing it through OptQuest. The function in Matlab is as follows:
function saddleproduct(infile, outfile, replication)
% Read input file
inp = readtable(infile);
disp(infile);
disp(outfile);
disp(replication);
disp(inp);
%Table indices are 1-based
var1 = inp{1,2};
var2 = inp{2,2};
%variance for simulation: Jalali et al.
W_expected(1) = var1 + var2;
W_expected(2) = 1.5-var1-2*var2-(0.5)*sin(2*pi*(var1^2-2*var2));
W_expected(3) = var1^2+var2^2-1.5;
variances = [(0.45*W_expected(1)+0.3)^2 (0.45*W_expected(2)+1.15)^2 (0.45*W_expected(3)+0.98)^2];
%simulate at current point
w0 = var1 + var2 + normrnd(0, sqrt(variances(1)));
w1 = 1.5 - var1 - 2*var2 -0.5*sin(2*pi*(var1^2 - 2*var2)) + ...
normrnd(0, sqrt(variances(2)));
w2 = var1^2 + var2^2 -1.5 + normrnd(0, sqrt(variances(3)));
%outputs
product=w0;
sum = w1;
quotient=w2;
% Output results to file
output = table({'func-product';'func-sum';'func-quotient'}, {product;sum;quotient});
disp(output);
writetable(output, outfile, 'WriteVariableNames', false);
end
The function reads inputs, gets replication number from OptQuest, and writes output to a file. In simulation (i.e., normrnd), Matlab always uses the default seed (rng('default)). I have to change the code in such a way that Matlab uses replication to determine an independent seed for each replication, where replications at the same input has the same number of replications.
How should I use the replication number to create a seed independent for each replication at the same input? Is clock the only option for it? What is your recommendation?

Risposta accettata

Peter Perkins
Peter Perkins il 17 Giu 2022
Ebru, you are doing parallel simulations and presumably want to combine the results under the assumption that those results are (pseudo)independent across replications.
Don't use seeds for that. You can, but there are better ways. Take a look at the parallel generators that support streams and substreams, and use one of those. These strategies are well documented, see
  4 Commenti
Ebru Angun
Ebru Angun il 21 Giu 2022
Hi Peter,
I detailed a bit more what I have to do:
1- Generate one stream with substreams:
s=RandStream('mrg32k3a');
Then, save the state as the current_state.mat.
2- Each time OptQuest calls Matlab, Matlab has to load the file current_state.mat.
3- Then, Matlab has to assign 12 substreams to 12 parallel processors, which work independently to simulate.
4- At the end of the simulation before returning to OptQuest, the 12 by 1 vector state should be written in current_state.mat, to be used at the next call.
How can I assign 12 substreams to 12 local processors?
Should the state vector be written in current_state.mat before returning to OptQuest? Will this way give independent pseudo-random numbers at each call?
Do I have to assign the current state to a global variable within Matlab function?
Thank you
Ebru
Peter Perkins
Peter Perkins il 21 Giu 2022
The whole point of stream numbers and substream numbers is that you don't need to save any states. Each stream or substream is easily referenced by its number. Read those doc sections.

Accedi per commentare.

Più risposte (1)

Jan
Jan il 17 Giu 2022
Modificato: Jan il 17 Giu 2022
rng('default')
is the default seed at the start of the Matlab session. All subsequent requesrts of random numbers move the seed accordingly. There is no need to seed the generator repeatedly.
If you wat the initial seed to be random also, use
rng('shuffle')
If you want the seed to depend of the loop index:
rng(replication)
assuming that replication is a positive integer.
But I'm confused by the question:
"How should I use the replication number to create a seed independent for each replication at the same input?" - with useing a defined seed, the rng is not "independent", but dependent.
"Is clock the only option for it?" - Why? If the rng should be independent, do not set further seeds.
  5 Commenti
Jan
Jan il 17 Giu 2022
The 6th element of clock has a low entropy only. The mutliplication by replication is not useful. Remember that only the integer part of the seed is used. Then providing the milliseconds in the 6th element of clock matter, if the replication value is > 1000.
Use rng('shuffle') to get a random shuffle. But using different streams as suggested by Peter is much better.

Accedi per commentare.

Categorie

Scopri di più su Random Number Generation in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by