Divide training , validation and testing data.

11 visualizzazioni (ultimi 30 giorni)
How can I divide only training and validation data randomly and have a separate contingous block for testing data.
for eg. if I have 2000 target points. I want to have randomly selected points from first 1500 points for training and validation but for testing I want 1501 to 2000 target points.

Risposta accettata

KSSV
KSSV il 27 Giu 2022
A = rand(2000,3) ; % your data
Test = A(1501:end,:) ; % take test continuously
A = A(1:1500,:) ; % pick the left data
A = A(randperm(1500,1500),:) ; % randomise the data
train_idx = round(70/100*1500) ; % 70% training
Train = A(1:train_idx,:) ;
Valid = A(train_idx+1:end,:) ;
  2 Commenti
KSSV
KSSV il 27 Giu 2022
Thanks is accepting/ votinng the answer... :)

Accedi per commentare.

Più risposte (1)

Image Analyst
Image Analyst il 27 Giu 2022
Depends on what kind of network training you're doing. If you're using trainNetwork and labels, then you can use imageDatastores and the function splitEachLabel
% Split the image data store into 80% for training, 10% for validation, and 10% for testing.
[trainingSet, validationSet, testSet] = splitEachLabel(imds, 0.8, 0.1);

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Prodotti


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by