calculate the classification accuracy after training a "pretrained model"
22 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Rayan Matlob
il 28 Giu 2022
Commentato: Dehia
il 2 Ott 2023
how to calcualte the MSE, MAE RMSE or any other classification accuracy of a pretrained model?
next is my code:
imds = imageDatastore('C:\Users\Rayan\Desktop\Work\9_5_work_on_4_groups\9_1\R_9_1_GSM', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
net = resnet50;
deepNetworkDesigner(net)
analyzeNetwork(net)
inputSize = net.Layers(1).InputSize;
lgraph = layerGraph(net);
edit(fullfile(matlabroot,'examples','nnet','main','findLayersToReplace.m'))
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] %#ok<NOPTS>
numClasses = numel(categories(imdsTrain.Labels));
%numClasses = 3
if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
end
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);
layers = lgraph.Layers;
connections = lgraph.Connections;
layers(1:20) = freezeWeights(layers(1:20));
lgraph = createLgraphUsingConnections(layers,connections);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain)
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
miniBatchSize=10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',0.0007, ...
'Shuffle','every-epoch', ...
'ValidationFrequency',valFrequency, ...
'ValidationData',augimdsValidation, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,lgraph,options);
[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels);
idx = randperm(numel(imdsValidation.Files),100);
R=1;
for j =1:24
figure(j)
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(R));
imshow(I)
label = YPred(idx(R));
title(string(label) + ", " + num2str(100*max(probs(idx(R),:)),3) + "%");
R=R+1;
end
end
0 Commenti
Risposta accettata
Andreas Apostolatos
il 28 Giu 2022
Hi Rayan,
From the code snippet you share it appears that you are training a neural network for classification while you are then performing inference for some validation data,
net = trainNetwork(augimdsTrain,lgraph,options);
[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels);
Error measures such as the Mean Squarer Error (MSE) or the Root Mean Square Error (RMSE) are suited for regression problems where the response variables are continuous and not for classification problems.
To evaluate the performance of a classifier it is more appropriate to use a Confusion Matrix or to compute the percentage of responses that have been correctly predicted by the classifier. The corresponding workflow is underlined in the following link,
I hope that you find this information useful for needs.
Kind regards
Andreas
2 Commenti
Dehia
il 2 Ott 2023
Could you assist me in calculating the F-score, recall, sensitivity, and ROC curve, please?
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!