Error when taking the continuous time Fourier transform
2 views (last 30 days)
Show older comments
I am trying to figure out what the error is associated with taking a Fourier transform. I have a 1D vector A of 130 elements and I know the error associated with each element that is just a number. The error is a 130 element vector called std_A. From that I think I can calculate the error associated with the function that it makes up:
syms t w real
f(t) = sum(exp(-t./A))*heaviside(t);
std_ft(t) = sqrt(sum((abs(t).*exp(-t.*A)*heaviside(t)+dirac(t)).*std_A).^2);
The last line is what I calculated by doing the error propagation for the nonlinear function
and is approximate.

Since I think in general you need to take the Fourier transform of the error in the time domain to calculate the error in the frequency domain, I have:
std_fw(w) = fourier(std_ft(t),t,w);
The calculation is very slow I think due to the length of the vector A and also the end result is actually a function of both t and w, which I'm not sure how to work with.
Is there a better way of doing this? I feel like I am making this harder than it needs to be.
Accepted Answer
Paul
on 11 Jul 2022
Using some examle data ...
A = 1:5;
std_A = 11:15;
syms t w real
f(t) = sum(exp(-t./A))*heaviside(t)
std_ft(t) = sqrt(sum((abs(t).*exp(-t.*A)*heaviside(t)+dirac(t)).*std_A).^2)
FWIW, there is no need to use abs(t) here because each is multiplied by heaviside(t).
Anyway, I doubt the signal std_ft(t) has a closed form expression for its Fourier Transform, assuming its Fourier Transform exists.
fourier(std_ft(t),t,w)
Certainly Matlab can't find one, so it just resturns an answer in terms of fourier().
6 Comments
Paul
on 11 Jul 2022
Actually, I guess I should have at least run a simple test to see if it works:
syms t w real
A = 1; dtau = 0.1;
f(t) = exp(-t/(A + dtau))*heaviside(t);
F(w) = fourier(f(t),t,w);
f0(t) = exp(-t/A)*heaviside(t);
F0(w) = fourier(f0(t),t,w);
dF(w) = dtau/A^2/(1/A + 1i*w)^2;
figure;
fplot(abs([F(w) , F0(w) , dF(w) , F0(w)+dF(w)]))
legend('F', 'F0', 'dF' , 'F0 + dF')
figure;
fplot(angle([F(w) , F0(w) , dF(w) , F0(w)+dF(w)]))
legend('F', 'F0', 'dF' , 'F0 + dF')
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!