Constrained regression with constrains on the slopes
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
I was the following regeression specification 
ln Q = ln A + alpha * ln K + beta * ln L
I want to fins alpha and beta such that alpha + beta < 1 and alpha > 0 and beta > 0.
I am trying to use lsqlin but I don't understand how to write the specification.
5 Commenti
  Torsten
      
      
 il 26 Lug 2022
				But you want to fit Q against A*K^x(1)*L^x(2). 
In the above code, you try to make A*K^x(1)*L^x(2) = 0.
Risposte (1)
  Matt J
      
      
 il 26 Lug 2022
        
      Modificato: Matt J
      
      
 il 26 Lug 2022
  
      AA=log(K(:)./L(:));
bb=log(Q(:)./A(:)./L(:));
alpha=min(   max(AA\bb,0) ,1   );
beta=1-alpha;
2 Commenti
  Matt J
      
      
 il 27 Lug 2022
				
      Modificato: Matt J
      
      
 il 27 Lug 2022
  
			Darn it. Well then, why not with lsqlin as originally proposed,
C=[log(K(:)) log(L(:));
d=log(Q(:)./A(:));
x0=lsqlin(C,d,[1,1],1,[],[],[0 0],[1,1]);
alpha=x0(1);
beta=x0(2);
If desired, you can use x0 to initialize a a nonlinear least squares fit to the original non-logged model,
fun = @(x,KL) A(:).'*KL.^x;
lb = [0, 0];
ub = [1, 1];
x=lsqcurvefit(fun,x0(:)',[K(:),L(:)], Q(:), lb,ub);
alpha=x(1);
beta=x(2);
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



