# Save coefficients from fitlme function in a table

8 visualizzazioni (ultimi 30 giorni)
alphabetagamma il 30 Lug 2022
Commentato: Abderrahim. B il 30 Lug 2022
I am running a fixed effects model using the lme function and would like to save the coefficients in a table. I tried the following
coefficient_table = cell2table(cell(0,4), 'VariableNames', {'Estimate', 'SE', 'tStat', 'pValue'});
fe = fitlme(data_table, strcat(var1, '~', var2));
value = fe.Coefficients(2:end, :);
However, class(value) is 'classreg.regr.lmeutils.titleddataset', and not a table. The same problem does not arise when I fit a linear regreression model with fitlm function. Then, the class(value) = table
Ultimately, I want to save all the coefficients in
coefficient_table = [coefficient_table; value];
How can I convert the class of value to a table? Or is there another way to save the coefficients into a table? I'd really appreciate your help.
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Abderrahim. B il 30 Lug 2022
Hi
You need to use dataset2table.
Demo:
tbl = table(X(:,12),X(:,14),X(:,24),'VariableNames',{'Horsepower','CityMPG','EngineType'});
ans = 5×3 table
Horsepower CityMPG EngineType __________ _______ __________ 111 21 13 111 21 13 154 19 37 102 24 35 115 18 35
%
lme = fitlme(tbl,'CityMPG~Horsepower+(1|EngineType)+(Horsepower-1|EngineType)');
% Retrieve and convert to table fitlme coefficients
coef_tbl = dataset2table(lme.Coefficients)
coef_tbl = 2×8 table
Name Estimate SE tStat DF pValue Lower Upper _______________ ________ _______ ______ ___ __________ ________ _________ {'(Intercept)'} 37.276 2.8556 13.054 201 1.3147e-28 31.645 42.906 {'Horsepower' } -0.12631 0.02284 -5.53 201 9.8848e-08 -0.17134 -0.081269
% In case you want to convert Name from cell to categorical.
coef_tbl.Name = categorical(coef_tbl.Name)
coef_tbl = 2×8 table
Name Estimate SE tStat DF pValue Lower Upper ___________ ________ _______ ______ ___ __________ ________ _________ (Intercept) 37.276 2.8556 13.054 201 1.3147e-28 31.645 42.906 Horsepower -0.12631 0.02284 -5.53 201 9.8848e-08 -0.17134 -0.081269
Hope this helps
##### 2 CommentiMostra NessunoNascondi Nessuno
alphabetagamma il 30 Lug 2022
Modificato: alphabetagamma il 30 Lug 2022
Thank you, that was very helpful. :)
Abderrahim. B il 30 Lug 2022
My pleasure !

Accedi per commentare.

### Categorie

Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by