How to make a m*2 matrix into n number of 2x2 matrices

3 visualizzazioni (ultimi 30 giorni)
Hey,
I have, A = 208x2 matrix. I wish to to spit this matrix into 104 2x2 matrices. I have tried using num2cell and mat2cell but have had no luck. Any help would be appreicated.
Thanks.

Risposta accettata

Stephen23
Stephen23 il 7 Set 2022
A = rand(208,2);
C = mat2cell(A,2*ones(104,1),2)
C = 104×1 cell array
{2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double} {2×2 double}
  6 Commenti
Dyl
Dyl il 8 Set 2022
Hey I have another question I reshaped the 2x1x104 matrix into a 13x8 matrix where I only took one value for each val(:,:,1) , valu(:,:,2) etc..
13x8 = [-28,-64 ... ;-33,-74...]
I wanted the values to insert into the 13x8 matric column wise so 1-8 for row 1 then 1-8 for row 2 so on, but they inserted row wise. How can I make the matrix I am after? Thanks in advance.

Accedi per commentare.

Più risposte (2)

KSSV
KSSV il 7 Set 2022
A = rand(208,2) ;
[r,c] = size(A);
nlay = 104 ;
out = permute(reshape(A',[c,r/nlay,nlay]),[2,1,3]);

Abderrahim. B
Abderrahim. B il 7 Set 2022
Split A
A = randi(10, 208, 2) ; % a mtarix of size 208x2
size(A)
ans = 1×2
208 2
B = reshape(A, 2, 2, []) ;
Access 2x2 matrices
B1 = B(:,:,1)
B1 = 2×2
5 7 9 6
B2 = B(:,:,2)
B2 = 2×2
8 8 4 1
Hope this helps
  2 Commenti
Stephen23
Stephen23 il 7 Set 2022
Modificato: Stephen23 il 7 Set 2022
Note that this method does not keep the 2x2 matrices of the original matrix:
A = randi(10, 208, 2)
A = 208×2
3 1 9 7 9 3 4 9 8 7 5 5 4 4 9 1 8 10 10 8
B = reshape(A, 2,2,[]) % not the same matrices
B =
B(:,:,1) = 3 9 9 4 B(:,:,2) = 8 4 5 9 B(:,:,3) = 8 5 10 4 B(:,:,4) = 2 1 10 10 B(:,:,5) = 2 5 7 9 B(:,:,6) = 4 7 4 9 B(:,:,7) = 6 9 4 6 B(:,:,8) = 10 9 2 3 B(:,:,9) = 10 4 6 4 B(:,:,10) = 8 5 2 5 B(:,:,11) = 4 2 6 4 B(:,:,12) = 5 1 6 8 B(:,:,13) = 7 4 4 6 B(:,:,14) = 3 7 6 6 B(:,:,15) = 4 4 7 9 B(:,:,16) = 9 6 2 10 B(:,:,17) = 8 9 7 6 B(:,:,18) = 3 3 2 4 B(:,:,19) = 6 1 6 3 B(:,:,20) = 4 3 10 10 B(:,:,21) = 5 9 6 5 B(:,:,22) = 2 2 8 10 B(:,:,23) = 4 8 3 7 B(:,:,24) = 9 7 2 3 B(:,:,25) = 8 10 6 9 B(:,:,26) = 6 7 8 4 B(:,:,27) = 7 10 10 1 B(:,:,28) = 3 9 7 4 B(:,:,29) = 4 3 9 10 B(:,:,30) = 4 5 3 2 B(:,:,31) = 2 5 9 5 B(:,:,32) = 2 9 9 4 B(:,:,33) = 2 1 6 9 B(:,:,34) = 8 1 3 4 B(:,:,35) = 2 4 4 3 B(:,:,36) = 7 1 5 4 B(:,:,37) = 10 7 1 10 B(:,:,38) = 8 1 1 10 B(:,:,39) = 10 4 1 8 B(:,:,40) = 2 7 9 7 B(:,:,41) = 3 10 2 7 B(:,:,42) = 8 5 9 5 B(:,:,43) = 3 10 10 1 B(:,:,44) = 7 9 2 3 B(:,:,45) = 2 10 9 10 B(:,:,46) = 8 1 9 6 B(:,:,47) = 5 8 7 9 B(:,:,48) = 2 2 3 2 B(:,:,49) = 3 2 3 5 B(:,:,50) = 4 2 9 3 B(:,:,51) = 7 10 10 3 B(:,:,52) = 9 5 3 3 B(:,:,53) = 1 3 7 9 B(:,:,54) = 7 4 5 1 B(:,:,55) = 10 2 8 10 B(:,:,56) = 7 8 8 4 B(:,:,57) = 3 3 6 1 B(:,:,58) = 9 2 5 6 B(:,:,59) = 10 9 6 3 B(:,:,60) = 1 9 5 4 B(:,:,61) = 5 9 4 3 B(:,:,62) = 7 9 8 5 B(:,:,63) = 3 7 3 10 B(:,:,64) = 8 10 10 8 B(:,:,65) = 6 10 9 4 B(:,:,66) = 8 2 7 3 B(:,:,67) = 3 6 5 3 B(:,:,68) = 7 5 5 6 B(:,:,69) = 3 6 6 10 B(:,:,70) = 4 4 6 1 B(:,:,71) = 2 7 6 8 B(:,:,72) = 1 6 1 5 B(:,:,73) = 7 1 10 1 B(:,:,74) = 1 3 4 6 B(:,:,75) = 1 4 5 9 B(:,:,76) = 10 10 9 1 B(:,:,77) = 10 2 4 4 B(:,:,78) = 4 8 8 3 B(:,:,79) = 10 1 10 8 B(:,:,80) = 6 5 7 9 B(:,:,81) = 10 9 8 5 B(:,:,82) = 5 5 5 8 B(:,:,83) = 1 8 5 1 B(:,:,84) = 10 4 4 8 B(:,:,85) = 8 7 6 4 B(:,:,86) = 4 10 4 2 B(:,:,87) = 9 6 3 2 B(:,:,88) = 9 7 9 7 B(:,:,89) = 10 8 10 7 B(:,:,90) = 1 3 9 4 B(:,:,91) = 7 4 1 8 B(:,:,92) = 10 9 5 9 B(:,:,93) = 2 4 6 8 B(:,:,94) = 6 3 7 10 B(:,:,95) = 10 9 10 2 B(:,:,96) = 10 5 3 2 B(:,:,97) = 10 4 9 4 B(:,:,98) = 10 5 9 8 B(:,:,99) = 5 7 6 7 B(:,:,100) = 7 10 1 9 B(:,:,101) = 1 2 7 9 B(:,:,102) = 8 3 5 6 B(:,:,103) = 10 10 4 8 B(:,:,104) = 6 10 3 4
To keep the original matrices requires taing into account the order of elements stored in memory:
B = permute(reshape(A.',2,2,[]),[2,1,3])
B =
B(:,:,1) = 3 1 9 7 B(:,:,2) = 9 3 4 9 B(:,:,3) = 8 7 5 5 B(:,:,4) = 4 4 9 1 B(:,:,5) = 8 10 10 8 B(:,:,6) = 5 2 4 10 B(:,:,7) = 2 7 10 8 B(:,:,8) = 1 8 10 4 B(:,:,9) = 2 3 7 6 B(:,:,10) = 5 3 9 1 B(:,:,11) = 4 9 4 5 B(:,:,12) = 7 2 9 6 B(:,:,13) = 6 10 4 6 B(:,:,14) = 9 9 6 3 B(:,:,15) = 10 1 2 5 B(:,:,16) = 9 9 3 4 B(:,:,17) = 10 5 6 4 B(:,:,18) = 4 9 4 3 B(:,:,19) = 8 7 2 8 B(:,:,20) = 5 9 5 5 B(:,:,21) = 4 3 6 3 B(:,:,22) = 2 7 4 10 B(:,:,23) = 5 8 6 10 B(:,:,24) = 1 10 8 8 B(:,:,25) = 7 6 4 9 B(:,:,26) = 4 10 6 4 B(:,:,27) = 3 8 6 7 B(:,:,28) = 7 2 6 3 B(:,:,29) = 4 3 7 5 B(:,:,30) = 4 6 9 3 B(:,:,31) = 9 7 2 5 B(:,:,32) = 6 5 10 6 B(:,:,33) = 8 3 7 6 B(:,:,34) = 9 6 6 10 B(:,:,35) = 3 4 2 6 B(:,:,36) = 3 4 4 1 B(:,:,37) = 6 2 6 6 B(:,:,38) = 1 7 3 8 B(:,:,39) = 4 1 10 1 B(:,:,40) = 3 6 10 5 B(:,:,41) = 5 7 6 10 B(:,:,42) = 9 1 5 1 B(:,:,43) = 2 1 8 4 B(:,:,44) = 2 3 10 6 B(:,:,45) = 4 1 3 5 B(:,:,46) = 8 4 7 9 B(:,:,47) = 9 10 2 9 B(:,:,48) = 7 10 3 1 B(:,:,49) = 8 10 6 4 B(:,:,50) = 10 2 9 4 B(:,:,51) = 6 4 8 8 B(:,:,52) = 7 8 4 3 B(:,:,53) = 7 10 10 10 B(:,:,54) = 10 1 1 8 B(:,:,55) = 3 6 7 7 B(:,:,56) = 9 5 4 9 B(:,:,57) = 4 10 9 8 B(:,:,58) = 3 9 10 5 B(:,:,59) = 4 5 3 5 B(:,:,60) = 5 5 2 8 B(:,:,61) = 2 1 9 5 B(:,:,62) = 5 8 5 1 B(:,:,63) = 2 10 9 4 B(:,:,64) = 9 4 4 8 B(:,:,65) = 2 8 6 6 B(:,:,66) = 1 7 9 4 B(:,:,67) = 8 4 3 4 B(:,:,68) = 1 10 4 2 B(:,:,69) = 2 9 4 3 B(:,:,70) = 4 6 3 2 B(:,:,71) = 7 9 5 9 B(:,:,72) = 1 7 4 7 B(:,:,73) = 10 10 1 10 B(:,:,74) = 7 8 10 7 B(:,:,75) = 8 1 1 9 B(:,:,76) = 1 3 10 4 B(:,:,77) = 10 7 1 1 B(:,:,78) = 4 4 8 8 B(:,:,79) = 2 10 9 5 B(:,:,80) = 7 9 7 9 B(:,:,81) = 3 2 2 6 B(:,:,82) = 10 4 7 8 B(:,:,83) = 8 6 9 7 B(:,:,84) = 5 3 5 10 B(:,:,85) = 3 10 10 10 B(:,:,86) = 10 9 1 2 B(:,:,87) = 7 10 2 3 B(:,:,88) = 9 5 3 2 B(:,:,89) = 2 10 9 9 B(:,:,90) = 10 4 10 4 B(:,:,91) = 8 10 9 9 B(:,:,92) = 1 5 6 8 B(:,:,93) = 5 5 7 6 B(:,:,94) = 8 7 9 7 B(:,:,95) = 2 7 3 1 B(:,:,96) = 2 10 2 9 B(:,:,97) = 3 1 3 7 B(:,:,98) = 2 2 5 9 B(:,:,99) = 4 8 9 5 B(:,:,100) = 2 3 3 6 B(:,:,101) = 7 10 10 4 B(:,:,102) = 10 10 3 8 B(:,:,103) = 9 6 3 3 B(:,:,104) = 5 10 3 4
Abderrahim. B
Abderrahim. B il 7 Set 2022
Thanks @Stephen23. But he does not mention that the order must be te same as in the original matrix!

Accedi per commentare.

Categorie

Scopri di più su Loops and Conditional Statements in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by