Solving for two variable.

13 visualizzazioni (ultimi 30 giorni)
Sebastian
Sebastian il 10 Set 2022
Modificato: Torsten il 10 Set 2022
I have:
clearclc
x=[7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
y=[0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
but I need do find n and I0 from:
I = I0 * e^( (q*U)/(n*k*T) )
I already know q, U, k and T.
  2 Commenti
Alan Stevens
Alan Stevens il 10 Set 2022
Modificato: Alan Stevens il 10 Set 2022
What are the equivalents of x and y in your equation? Presumably, y represents I. What does x represent?
Sebastian
Sebastian il 10 Set 2022
x=I and y=U

Accedi per commentare.

Risposta accettata

Alan Stevens
Alan Stevens il 10 Set 2022
Modificato: Alan Stevens il 10 Set 2022
In that case one way is to take logs of both sides to get:
log(I) = log(I0) + q/(n*k*T)*U
then do a best-fit straight line to the data (use log(x)) and get log(I0) from the intercept and q/(n*k*T) from the slope, from which yoiu can then get I0 and n.
  4 Commenti
Sebastian
Sebastian il 10 Set 2022
Modificato: Sebastian il 10 Set 2022
I have q = 1.60*10^(-19), k=1.38*10^(-23) and t=300
I get n = 1.5966
using n=(q*y)/(k*t*(log(x)-log(I0)))
the correct n is 1.521
Torsten
Torsten il 10 Set 2022
x=[7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
y=[0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
% You said x = I and U = y so
p=polyfit(y,log(x),1);
f=polyval(p,y);
figure(1)
plot(y,log(x),'o',y,f,'-'), grid
xlabel('U'),ylabel('logI')
% Intercept is p(2), slope is p(1)
I0 = exp(p(2));
q_on_nkT = p(1); % You need to rearrange this to get n, using
% your known values for q, k and T
q = 1.60*10^(-19);
k = 1.38*10^(-23);
T = 300;
n = q/(k*T*q_on_nkT);
disp(I0)
2.4861e-10
disp(n)
1.5206
figure(2)
plot(y,x,'o',y,I0*exp(q/(k*T)*y/n),'-'), grid
xlabel('U'),ylabel('I')

Accedi per commentare.

Più risposte (1)

Torsten
Torsten il 10 Set 2022
Modificato: Torsten il 10 Set 2022
I = [7.53*10^(-5) 3.17*10^(-4) 1.07*10^(-3) 3.75*10^(-3) 1.35*10^(-2) 4.45*10^(-2) 1.75*10^(-1) 5.86*10^(-1)];
U = [0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85];
q = 1.60*10^(-19);
k = 1.38*10^(-23) ;
T = 300;
value = q/(k*T);
fun = @(I0,n) I - I0 * exp( value * U / n );
p0 = [1 ; 10]; % Initial guess for I0 and n
options = optimset('TolX',1e-10,'TolFun',1e-10,'MaxFunEvals',100000,'MaxIter',100000);
sol = lsqnonlin(@(p)fun(p(1),p(2)),p0,[],[],options);
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
format long
I0 = sol(1)
I0 =
4.840384083194344e-10
n = sol(2)
n =
1.570628124624527
hold on
plot(U,I,'o')
plot(U,I0 * exp( value * U / n ))
grid
hold off
  4 Commenti
Sebastian
Sebastian il 10 Set 2022
Modificato: Sebastian il 10 Set 2022
I0 and n are both wrong.
I0 = 0.249*10^(-9)
and
n = 1.521
Torsten
Torsten il 10 Set 2022
Modificato: Torsten il 10 Set 2022
No, you are wrong.
Applying log to your equation distorts the fitting.
You must fit I0*exp(value * U / n) against U to get unbiased estimates for your parameters.
Fitting log(I0) + value/n * U against log(U) only gives an approximation for I0 and n.

Accedi per commentare.

Categorie

Scopri di più su Linear and Nonlinear Regression in Help Center e File Exchange

Prodotti


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by