Minimalization problem LinearConstraint and conjugate gradient optimizer

2 visualizzazioni (ultimi 30 giorni)
Problem, input data and equations are described in details in attachment. This matrix is called Ms in the below mentioned equation.
The equation is the function F(ω). Omega (ω) are the seven wages which I’m looking for by minimize values of the second equation. The condition is that ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 = 1.
When using Scipy.stats, the LinearConstraint and Conjugate gradient optimizer were used.
The obtained results were: 0.20141944, 0.1590185 , 0.13852083, 0.08702209, 0.13283426, 0.14539815, 0.14247747. Sum of these wages equals 1.
I very appreciate if someone help me out to write code or use Optimization tool to obtain these results.The input matrix Ms is in attached file.
Best Regards,
Tomi
  2 Commenti
Torsten
Torsten il 25 Set 2022
What are you trying to minimize ? What are your constraints ? I don't get it from your decription.
Tomi
Tomi il 26 Set 2022
Spostato: Bruno Luong il 26 Set 2022
I'm sorry for confusion.
Please see the python code used with Scipy - this code produce the results which I want to write in MatLab script and receive the same results. The second equation is used to minimalize omega wages.
I attached python code.
Best,
Tomi

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 26 Set 2022
Modificato: Torsten il 26 Set 2022
According to the Python code, F is maximized, not minimized. Change in the below code if appropriate.
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
format long
[w,fval] = fmincon(@(w)fun(w,M),w0,[],[],Aeq,beq,lb,ub,[],options)
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
w = 7×1
0.200081504852845 0.157959395465906 0.137599668689948 0.086444832698773 0.131950619523270 0.144443169868022 0.141520808901237
fval =
-3.039398091210332
function value = fun(w,M)
cM = zeros(7,1);
Mw = M*w;
Mwm = mean(Mw);
Mim = mean(M,1);
for i = 1:7
Mi = M(:,i);
cM(i) = sum((Mi-Mim(i)).*(Mw-Mwm))/sqrt(sum((Mi-Mim(i)).^2)*sum((Mw-Mwm).^2));
end
value = -sum(cM);
end
  2 Commenti
Torsten
Torsten il 28 Set 2022
Modificato: Torsten il 28 Set 2022
@Tomi comment moved here:
Dear Torsten,
I'm trying to understand code - need some help.
I very appreciate if you could tell me how the cM(i) equation was created?
Best,
Tomi

Accedi per commentare.

Più risposte (2)

Tomi
Tomi il 28 Set 2022
Thank you for your time and help.
I very aprpeciate that.
Best,
Tomi

Tomi
Tomi il 28 Set 2022
Dear Torsten,
I'm trying to understand code - need some help.
I very appreciate if you could tell me how the cM(i) equation was created?
Best,
Tomi
  5 Commenti
Torsten
Torsten il 29 Set 2022
Modificato: Torsten il 29 Set 2022
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
Mim = mean(M,1);
fun = @(w) -sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7));
fun = function_handle with value:
@(w)-sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7))
format long
[w,fval] = fmincon(fun,w0,[],[],Aeq,beq,lb,ub,[],options)
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
w = 7×1
0.200081504852845 0.157959395465906 0.137599668689948 0.086444832698773 0.131950619523270 0.144443169868022 0.141520808901237
fval =
-3.039398091210332

Accedi per commentare.

Categorie

Scopri di più su Quadratic Programming and Cone Programming in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by