Minimalization problem LinearConstraint and conjugate gradient optimizer
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Problem, input data and equations are described in details in attachment. This matrix is called Ms in the below mentioned equation.
The equation is the function F(ω). Omega (ω) are the seven wages which I’m looking for by minimize values of the second equation. The condition is that ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 = 1.
When using Scipy.stats, the LinearConstraint and Conjugate gradient optimizer were used.
The obtained results were: 0.20141944, 0.1590185 , 0.13852083, 0.08702209, 0.13283426, 0.14539815, 0.14247747. Sum of these wages equals 1.
I very appreciate if someone help me out to write code or use Optimization tool to obtain these results.The input matrix Ms is in attached file.
Best Regards,
Tomi
2 Commenti
Torsten
il 25 Set 2022
What are you trying to minimize ? What are your constraints ? I don't get it from your decription.
Risposta accettata
Torsten
il 26 Set 2022
Modificato: Torsten
il 26 Set 2022
According to the Python code, F is maximized, not minimized. Change in the below code if appropriate.
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
format long
[w,fval] = fmincon(@(w)fun(w,M),w0,[],[],Aeq,beq,lb,ub,[],options)
function value = fun(w,M)
cM = zeros(7,1);
Mw = M*w;
Mwm = mean(Mw);
Mim = mean(M,1);
for i = 1:7
Mi = M(:,i);
cM(i) = sum((Mi-Mim(i)).*(Mw-Mwm))/sqrt(sum((Mi-Mim(i)).^2)*sum((Mw-Mwm).^2));
end
value = -sum(cM);
end
Più risposte (2)
Tomi
il 28 Set 2022
5 Commenti
Torsten
il 29 Set 2022
Modificato: Torsten
il 29 Set 2022
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
Mim = mean(M,1);
fun = @(w) -sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7));
format long
[w,fval] = fmincon(fun,w0,[],[],Aeq,beq,lb,ub,[],options)
Vedere anche
Categorie
Scopri di più su Quadratic Programming and Cone Programming in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!