I gave the initial condition correctly still the program not working.
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
SAHIL SAHOO
il 11 Ott 2022
Risposto: Walter Roberson
il 11 Ott 2022
ti = 0;
tf = 70E-8;
tspan=[ti tf];
k = (0.62).*10^(-5);
% y0= [(10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% ((-3.14).*rand(5,1) + (3.14).*rand(5,1))];
y0 = [ 0.00001; 0.00001; 0.00001; 0.00001; 0.00001;
0.00001; 0.00001; 0.00001; 0.00001; 0.00001; 2.5669; 2.0482; 2.0454; -0.7968; 0.2303];
yita_mn = [
0 1 0 0 1;
1 0 1 0 0;
0 1 0 1 0;
0 0 1 0 1;
1 0 0 1 0;
]*(k);
N = 5;
tp = 1E-12;
[T,Y]= ode45(@(t,y) rate_eq(t,y,yita_mn,N),tspan./tp,y0);
figure(1)
plot(T./t,(Y(:,16)),'linewidth',0.8);
hold on
for m = 16:20
plot(T./t,(Y(:,m)),'linewidth',0.8);
end
hold off
grid on
xlabel("time")
ylabel("phase difference")
set(gca,'fontname','times New Roman','fontsize',18,'linewidth',1.8);
function dy = rate_eq(t,y,yita_mn,N,o)
dy = zeros(4*N,1);
dGdt = zeros(N,1);
dAdt = zeros(N,1);
dOdt = zeros(N,1);
P = 0.5;
a = 1;
T = 2E3;
Gt = y(1:3:3*N-2);
At = y(2:3:3*N-1);
Ot = y(3:3:3*N-0);
k = (0.62).*10^(-5);
for i = 1:N
dGdt(i) = (P - Gt(i) - (1 + 2.*Gt(i)).*(At(i))^2)./T ;
dAdt(i) = (Gt(i).*(At(i)));
dOdt(i) = -a.*(Gt(i));
for j = 1:N
dAdt(i) = dAdt(i)+yita_mn(i,j).*(At(j))*sin(Ot(j)-Ot(i));
dOdt(i) = dOdt(i)+yita_mn(i,j).*((At(j)/At(i)))*cos(Ot(j)-Ot(i));
end
end
dy(1:3:3*N-2) = dGdt;
dy(2:3:3*N-1) = dAdt;
dy(3:3:3*N-0) = dOdt;
n1 = (1:5)';
n2 = circshift(n1,-1);
n16 = n1 + 15;
n17 = circshift(n16,-1);
n20 = circshift(n16,1);
j2 = 3*(1:5)-1;
j5 = circshift(j2,-1);
j8 = circshift(j2,-2);
j19 = circshift(j2,1);
dy(n16) = -a.*(Gt(n2)-Gt(n1)) + (k).*(y(j2)./y(j5)).*cos(y(n16)) - (k).*(y( j5)./y(j2)).*cos(y(n16)) + (k).*(y(j8)./y(j5)).*cos(y(n17)) - (k).*(y(j19)./y(j2)).*cos(y(n20));
end
0 Commenti
Risposta accettata
Walter Roberson
il 11 Ott 2022
y0 = [ 0.00001; 0.00001; 0.00001; 0.00001; 0.00001;
0.00001; 0.00001; 0.00001; 0.00001; 0.00001; 2.5669; 2.0482; 2.0454; -0.7968; 0.2303];
That is 15 initial values.
for m = 16:20
plot(T./t,(Y(:,m)),'linewidth',0.8);
end
But you are trying to plot assuming 20 results. The only way to get 20 results is to have 20 or more initial values.
0 Commenti
Più risposte (1)
Benjamin Thompson
il 11 Ott 2022
circshift returns a vector of the same length as its input. So, j2, j5, j8, and j19 are vectors and not scalar values as the line having the failure seems to expect. You can use breakpoints in your script in MATLAB to investigate further and debug the problems.
0 Commenti
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!