Write MATLAB code to solve the following the minimum problem.

7 visualizzazioni (ultimi 30 giorni)
Given the function f(x, y)=3cos(xy)+x+ y^2 , where -4≤x≤4, -4≤y≤4 , please find the maximum value by the PSO algorithm. And plot the curve of the fitness evolution.

Risposta accettata

Sam Chak
Sam Chak il 13 Ott 2022
You are advised to do some reading on the PSO algorithm to understand the code.
% Step 1: Initialize PSO
Xmin = -4; % lower bound of candidate solutions
Xmax = 4; % upper bound of candidate solutions
Vmax = 1; % maximum moving distance of a particle in a loop
Vmin = -1; % minimum moving distance of a particle in a loop
c1 = 1.3; % Local learning factor
c2 = 1.7; % Global learning factor
wmin = 0.10; % min weight value
wmax = 0.90; % max weight value
Gmax = 100; % number of generations (fancy term for computational iterations)
Size = 50; % number of particles (fancy term for candidate solutions)
for i = 1:Gmax
w(i) = wmax - ((wmax - wmin)/Gmax)*i;
end
for i = 1:Size
for j = 1:2
x(i, j) = Xmin + (Xmax - Xmin)*rand(1);
v(i, j) = Vmin + (Vmax - Vmin)*rand(1);
end
end
% Step 2: Calculte fitness
for i = 1:Size
p(i) = fitfun(x(i, :));
y(i, :) = x(i, :);
if i == 1
plocal(i, :) = findlbest(x(Size, :), x(i, :), x(i+1, :));
elseif i == Size
plocal(i, :) = findlbest(x(i-1, :), x(i, :), x(1, :));
else
plocal(i, :) = findlbest(x(i-1, :), x(i, :), x(i+1, :));
end
end
BestS = x(1,:);
for i = 2:Size
if fitfun(x(i, :)) > fitfun(BestS)
BestS = x(i, :);
end
end
% Step 3: Main loop
for kg = 1:Gmax
for i = 1:Size
% local adaptive mutation operator
M = 1;
if M == 1
v(i, :) = w(kg)*v(i, :) + c1*rand*(y(i, :) - x(i, :)) + c2*rand*(plocal(i, :) - x(i, :)); % Local optimization
elseif M == 2
v(i, :) = w(kg)*v(i, :) + c1*rand*(y(i, :) - x(i, :)) + c2*rand*(BestS - x(i, :)); % Global optimization
end
for j = 1:2 % Evaluate the velocity
if v(i, j) < Vmin
v(i, j) = Vmin;
elseif x(i, j) > Vmax
v(i, j) = Vmax;
end
end
x(i, :) = x(i, :) + v(i, :)*1; % Update position
for j = 1:2 % Check the limit
if x(i, j) < Xmin
x(i, j) = Xmin;
elseif x(i,j) > Xmax
x(i,j) = Xmax;
end
end
% Adaptive mutation
if rand > 0.60
k = ceil(2*rand);
x(i, k) = Xmin + (Xmax - Xmin)*rand(1);
end
% Step 4: Evaluate and update
if i == 1
plocal(i, :) = findlbest(x(Size, :), x(i, :), x(i+1, :));
elseif i == Size
plocal(i, :) = findlbest(x(i-1, :), x(i, :), x(1, :));
else
plocal(i, :) = findlbest(x(i-1, :), x(i, :), x(i+1, :));
end
if fitfun(x(i, :)) > p(i) % Evaluate and update
p(i) = fitfun(x(i, :));
y(i, :) = x(i, :);
end
if p(i) > fitfun(BestS)
BestS = y(i, :);
end
end
Best_value(kg) = fitfun(BestS);
end
figure(1);
kg = 1:Gmax;
plot(kg, Best_value, 'r', 'linewidth', 2, 'Color', "#F7A7B7"), grid on
xlabel('Generations');
ylabel('Fitness function');
display('Local Maximum x at'); disp(BestS);
Local Maximum x at 3.1614 4.0000
display('with the value of the fitness function = '); disp(Best_value(Gmax));
with the value of the fitness function = 22.1520
[X, Y] = meshgrid(-4:8/40:4);
Z = (3*cos(X.*Y) + X + Y.^2);
surf(X, Y, Z), hold on
plot3(BestS(1), BestS(2), Best_value(Gmax), 'pentagram', 'MarkerFaceColor','red', 'MarkerSize', 15),
xlabel('x'), ylabel('y'), zlabel('f(x,y)')
% Fitness Function
function f = fitfun(x)
f = 3*cos(x(1)*x(2)) + x(1) + x(2)^2;
end
% Find Local Best
function f = findlbest(x1, x2, x3)
xSet = [x1; x2; x3];
fSet = [fitfun(x1), fitfun(x2), fitfun(x3)];
[maxvalue index] = max(fSet);
plocalbest = xSet(index,:);
f = plocalbest;
end
  2 Commenti
Sam Chak
Sam Chak il 24 Ott 2022
Good to hear that, Chihiro-san. If you find the code helpful, please consider accepting the Answer.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by