How to find coordinates of intersecting line?
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Kalasagarreddi Kottakota
il 20 Nov 2022
Modificato: Torsten
il 20 Nov 2022
Hi, I have plot which is shown below and there is black (dashed) vertical line in x axis at 3. I need to find the coordinates of intersection between black line and red curve.
clear all; close all;
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
figure()
plot(wrapTo2Pi(phi),t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
0 Commenti
Risposta accettata
Matt J
il 20 Nov 2022
Modificato: Matt J
il 20 Nov 2022
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
figure()
plot(wrapTo2Pi(phi),t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
hold off
z=wrapTo2Pi(phi(:)).';
n=nnz(diff(z)<-pi);
tc=interp1(phi,t,3+2*pi*(0:n) );
pc=0*tc+3;
hold on; plot(pc,tc,'xb'); hold off
0 Commenti
Più risposte (1)
Torsten
il 20 Nov 2022
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
phase = wrapTo2Pi(phi);
n = numel(phase);
v = (phase(1:n-1)-3).*(phase(2:n)-3);
idx = v <= 0;
coordinates = t(idx);
figure()
plot(phase,t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
plot(3*ones(size(coordinates)),coordinates,'o')
hold off
2 Commenti
Matt J
il 20 Nov 2022
I wonder if the jump discontinuity lines are to be considered part of the curve.
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


