Linear Least Squares Regression

2 visualizzazioni (ultimi 30 giorni)
A
A il 9 Dic 2022
Commentato: A il 10 Dic 2022
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
N = length(x);
X = 'ones (N, 1), x';
Y = y;
J='inv(X.*X)*X*Y';
plot(x,y,'bs',[0, 5],J(1)+J(2)*[0, 5]+J(3)*[0, 5]);
hold on
how can i turn this graph into this graph

Risposte (1)

Bora Eryilmaz
Bora Eryilmaz il 9 Dic 2022
Modificato: Bora Eryilmaz il 9 Dic 2022
% Original data
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
% Take tranposes.
x = x';
y = y';
% Find coefficients of a quadratic polynomial fit using linear least
% squares method.
C = [x.^2 x ones(size(x))] \ y
C = 3×1
2.1000 0.1538 -0.9000
% Get interpolated values on the polynomial.
xi = (-4:0.1:4)';
yi = C(1)*xi.^2 + C(2)*xi + C(3);
% Plot results.
plot(x,y, 'r*')
hold on
plot(xi,yi,'b-')

Categorie

Scopri di più su Linear and Nonlinear Regression in Help Center e File Exchange

Prodotti


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by