How to get real and imaginary terms from an expression?

4 visualizzazioni (ultimi 30 giorni)
I am trying to get real and imaginary terms from the following expression TF. But real(), imag() is not able to give me any solution.
syms s real
ws = 2 * pi * 85000 ;
Lp = 27.13e-6 ;
Cpp = 129.23e-9 ;
Zp = s * Lp + ws * Lp * 1i ;
Zpp = 1 / ( s * Cpp + ws * Cpp * 1i ) ;
TF = Zpp * Zp / ( Zp + Zpp ) ;
These two commands give me following answers.
TFreal = real(TF)
TFreal = 
TFimag = imag(TF)
TFimag = 
You can observe that the answers have real, imag commands in them instead of answers.
  2 Commenti
Paul
Paul il 11 Dic 2022
Hi Aditya,
Normally, a transfer function, which I assume is what TF means, is defined as a function of s, which is a complex variable, and all other terms in the tansfer function are all real. But here, we have s defined as real, and other terms in the TF are complex. Can you clarify exactly what this code is intened for?
Aditya Zade
Aditya Zade il 11 Dic 2022
Hey Paul,
Only 's' is a variable which I have defined as a real number.

Accedi per commentare.

Risposta accettata

Walter Roberson
Walter Roberson il 11 Dic 2022
syms s real
ws = 2 * pi * 85000 ;
Lp = 27.13e-6 ;
Cpp = 129.23e-9 ;
Zp = s * Lp + ws * Lp * 1i ;
Zpp = 1 / ( s * Cpp + ws * Cpp * 1i ) ;
TF = Zpp * Zp / ( Zp + Zpp ) ;
TFreal = real(TF)
TFreal = 
TFimag = imag(TF)
TFimag = 
simplify(TFreal)
ans = 
simplify(TFimag)
ans = 
  10 Commenti
Aditya Zade
Aditya Zade il 12 Dic 2022
One of my transfer function is mentioned below. The problem is matlab is considering it as inf/inf which is giving me NaN in TF. How can I reduce the accuracy of each cofficients such that matlab doesn't consider numerator and denominator as inf.
In other words, how can I make this expression into a TF to generate bode plots.
H_mi_idenvecap = (3198609293274692543065653067624214930931010880602439324145398125122373719207088478979647504147912365379393279754941675512836511355487782993690473574523041631084160518721751172162257705176739868804951103644988270056301183639951764002961292649184871320805158132898539453590562021769463423670681600*s^10 + 528394964584010682783572570459412119664515594164049190345558269437867459470515176667326104615180103456012477355413596835172119921200079260151617877500088502992749340415451742149406277381474643891231659256544455164436234396533126019809440535921033867151082644616021673572586341975274322902549476147200*s^9 + 3364815264139209882761251038034730020362043044801573317888318745671317862412400497423209337541418420521260443952869134388981445799336993041335421299405549089717062472469931053659028441787475552139751801731258711488308627072509140489498330224609031510667147325022465839409185515146370263699813850219632656384*s^8 + 563685908110931596054975975789145169901513780980290358304128472564818439113945323667367115971977027594918152558869188644661828289297726904892093313231476094308350368709481298326017516778957422345680859263591644269304648598798995637702553858174358334141567592255906469564947805207135557231654360809390637347504128*s^7 + 1490257685171315468981773939159767624935105379546903549767553901546757666260988184536138242660525137524427599600907269172197568037353264870592893757184448550843993106896014192025989160859007053395078824566748256700430184559758347451096212214570755769067612673807213370221663874574993990956271545381513459363454956601344*s^6 + 224411121359031406238956529185520395250362431900419601379549724354175300141779807782002787175390937335420258029478904711464033857382032746518758309250170139544602989872581677894407504342046674752426946975585667274279454218538522463096065609371083080593692625877514805336214723108899068335933784036977289350835195383669325824*s^5 + 313435614540771365005472378788015656763925845027971206036651498864090340592352682307018010940557769472344445076584267523825439903337732769841322691195467198038852610063857978387582140881350878878314891681041745284058278276910429225911095101311401498430011153223268796705288141506966312381716632816295470628030364360123375283077120*s^4 + 33052372310506629010656599121147115620859961521559341305146351113127420214834631202990344435993579760702170846892190791973857746526095679537107762472443219962883772363971249591309331211286424393764376285694816602968673940014673553192267278248106274456921340775937053409889209132481984880619358508372583085903071902984276537872895442944*s^3 + 10554849876610050019218981278396688996628674897403163356241700611846899932472970866934831849299194775963827696479104585836123032305509546783003015154442878237125239205963612543055962962608195786274300100491480333594963695160464423230708118733213297370805489181822237410178521006221240286568706063689875376392244199192804233754948767114592256*s^2 + 753392467992893717086282360117150962316839153406675455633706582201238077981189206904259370759701924447550938546700321591834810653022526799241547416036382680758251634390626464710218582595943371303498239715517551074690452253677797215333441705005554261781839683641360100743141925156332627926700008050827621415436588867603559400388725106077190848512*s + 40393566359665865213299995369702801378786875218724874851168023401021269156066673958605743192955287230615526894469312967897474790091218367504457257709499999902912836650529949891815535967261169141147611466577851052777443496008708518428106932969186262475588373778567341855852815573620320080624013993765045842114972784171785710233396747569200139998330880)/(8796093022208*(1736567701589301145136648268745070267169586006463452702588095291310545287345936191207231693796554822487658048259058768341620886269302733511008839672446368759925297181964446329483562182298316297460367920025475136735375318177318220152446938927265225*s^16 + 717181706990849576639378846143604344747449411096706760755432781269930354932423747033964722181786892343713490722151365999943109079738204766382874076277599763531511760836188464560773573023546208271499106196789947712108879925411040105198246484299810406400*s^15 + 8474902337396137452537172814758191980658242868146989657851391747578894251875032832065877742822364594666025855664179609126663161480336968740345550831115764290784755921679756769231426450016836146980279285273763923555792818972379443730261637462558119995610497024*s^14 + 3060326629338539947795355844711670424230830104533914727180539407962588796854615013646350523884347125794176122078030819700072795725888050006338552712785006937280184063404052729170190527501487957786817505885405810768143497607256181752489430834429438245071731940130816*s^13 + 15335444336168058219053185629448334708949063277544031136997077132483020621337637079802757161722640630404872281753614633056555568331414532672223094357966529046772826765042453467781257350997846896530993396891805695459960227266764332535793736164051751621607630139917288341504*s^12 + 4711858733362574057644866067860734266890167073692817480732992906997138035715344442510025574475777812882693974120674123611995382178060815482516053616266140291523815161417712375969402534241363378219168042007415040048566795665071810311976396545823703304132119454866433941966946304*s^11 + 12461014205963250065638676548329519983986852678656821442028223071451986862953854290657145129348903622243955644402794979315564378889686689969794544728780606414037860400637500820387005456202310836355975107206149920656892865375979089113148380105538910212977991189672316595043017557016576*s^10 + 3153610764893990481124174423558310705947546643632994209428020901123162737494351255973870435414198228754915355165434369521635012685859083006757509655278714956660143488334593307926704075313537591188840386118802653628117669854992826061562111167065459384377864567395435560227329653331202146304*s^9 + 4196412284794922572702360089303675577340283804488759850189612200368294017368398595914096366806020918778693395129234114128153062192604212478313975760328409295684988085937308175782203157955672589220365686768906199996621051328446913656225084261462685321058494326091046314623083166983844470867361792*s^8 + 839696424033259323305277259210900820320478003816838709480281015945809199296634999150590387829225143482425327884290937963213529918958215499963010050257883261661116698672089983062272555691561771948624741135615136402177972155830430074599923524875698012649853320313826785826359259368579738843006040539136*s^7 + 341072015811716244581240425181942419448756068895024422843527961260011128604733215760197603405155010453702864279995268573154131226786824324708691134950163294295325223338672708909939254713696078247686589394867848835471068071716381633979836751951857567203826189555176612717339907046903740670679827717512232960*s^6 + 51476173533824520781908853124919012872558430328391461780218775183986801463554817939279579606358525500680300575053075911956606069305313326101015765941389705874779285216218534083105540702681692717458081833490789076288368074605827448462551175726017448688748586848426830311404300308080734687142200861235996885254144*s^5 + 9228963476387818526423807612115148970316248169275808385076365503267308598269819401998734036439982463217524876484624976388723299159343094174914050928582387570266303834881596621229787172099209884856109159135095077583516660315341853942084463079767357281710097403352648761070698296853785890788932711840594861082305101824*s^4 + 911043127300211915454447709952136661126629354017481583423569852460766841727455715209418097330189535279221498687673228467765980464696556517614401815146230080830691482821416104568196921957378920491489758562441974400120279545914620076777651283757517630045507906342397020857506949542233013765663031850658377453871364193648640*s^3 + 75868678050389397096199117807278223110751098365028855498075829798267143867014386665936900343279698677835660735344427396694303631098532043960596038629673009001621357014913910492452492780815641595686087435829590661675243076354379570729851910901126879665446131462508434640539917488307446180193941439583412905434367223985904549888*s^2 + 3174513831849780742601338555460290943793994469034596358746253922613510616605561379821305476696010693727089813475729119325248586731428000109372903713452154026995530738937814787974412887244775242394586804120936971001141865477711946150235680311292016446655479884972049090441497967508802274262026411582423828562014806418492161112670208*s + 85101763546936457815360949157574484179847571907787276421705398659175650996907399114220574701462894693638387449557772198429740759814194738572525547329802602231403046298633131911713278866661938182354784531853129097941253657184023638815783627856915654844607628228041193047656641242417683444772761706726371526915906514106247461005512671232))

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Prodotti


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by