how to use audioOut ofter manipulation
    5 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
hi guys, im practicing matlab and ive pitch shifted a wav file that plays. i would like to now use spectral analysis on the new audio created. im stuck. any help will do, thanks
[audioIn,fs] = audioread('Heavenly Music - Gaming Sound Effect (HD).wav');
sound(audioIn,fs)
nsemitones = 3;
audioOut = shiftPitch(audioIn,nsemitones);
sound(audioOut,fs)
this is the code i used
Risposte (2)
  Mathieu NOE
      
 il 19 Dic 2022
        hello 
ty this : 
clc
clearvars
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[signal,Fs] = audioread('Heavenly Music - Gaming Sound Effect (HD).wav');
dt = 1/Fs;
[samples,channels] = size(signal);
% time vector 
t = (0:samples-1)*dt;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 1024*4;    % 
OVERLAP = 0.75;
% spectrogram dB scale
spectrogram_dB_scale = 80;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums 
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 1;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 4;
if decim>1
    for ck = 1:channels
    newsignal(:,ck) = decimate(signal(:,ck),decim);
    Fs = Fs/decim;
    end
   signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;
%%%%%% legend structure %%%%%%%%
for ck = 1:channels
    leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot  / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
    pondA_dB = pondA_function(freq);
    sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
    my_ylabel = ('Amplitude (dB (A))');
else
    my_ylabel = ('Amplitude (dB (L))');
end
figure(2),semilogx(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution 
title(['Averaged FFT Spectrum  / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
    [sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));  
    % FFT normalisation and conversion amplitude from linear to dB (peak)
    sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg));     % NB : X=fft(x.*hanning(N))*4/N; % hanning only
    % apply A weigthing if needed
    if option_w == 1
        pondA_dB = pondA_function(fsg);
        sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
        my_title = ('Spectrogram (dB (A))');
    else
        my_title = ('Spectrogram (dB (L))');
    end
    % saturation of the dB range : 
    % saturation_dB = 60;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
    min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
    sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
    % plots spectrogram
    figure(2+ck);
    imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
    axis('xy');colorbar('vert');grid on
    df = fsg(2)-fsg(1); % freq resolution 
    title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
    xlabel('Time (s)');ylabel('Frequency (Hz)');
end
function pondA_dB = pondA_function(f)
	% dB (A) weighting curve
	n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
	r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
	pondA = n./r;
	pondA_dB = 20*log10(pondA(:));
end
function  [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal  (example sinus amplitude 1   = 0 dB after fft).
% Linear averaging
%   signal - input signal, 
%   Fs - Sampling frequency (Hz).
%   nfft - FFT window size
%   Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
    s_tmp = zeros(nfft,channels);
    s_tmp((1:samples),:) = signal;
    signal = s_tmp;
    samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
%    compute fft with overlap 
 offset = fix((1-Overlap)*nfft);
 spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
%     % for info is equivalent to : 
%     noverlap = Overlap*nfft;
%     spectnum = fix((samples-noverlap)/(nfft-noverlap));	% Number of windows
    % main loop
    fft_spectrum = 0;
    for i=1:spectnum
        start = (i-1)*offset;
        sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
        fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft);     % X=fft(x.*hanning(N))*4/N; % hanning only 
    end
    fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum  % Select first half 
    if rem(nfft,2)    % nfft odd
        select = (1:(nfft+1)/2)';
    else
        select = (1:nfft/2+1)';
    end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
0 Commenti
  Rohit
    
 il 19 Dic 2022
        Hello,
You can refer to the following documentation link for basic spectral analysis along with the documentation link for spectrum analyzer block and spectrum function. 
This is the documentation for a related MATLAB Answer.
0 Commenti
Vedere anche
Categorie
				Scopri di più su Spectral Analysis in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



