How to calculate double integral?

2 visualizzazioni (ultimi 30 giorni)
Hexe
Hexe il 16 Dic 2022
Commentato: Hexe il 16 Dic 2022
Hi! I have a problem with solution of double integral. The syms solves too long and it cannot be used.But in another way I have problem.
I have an integral fun2 on z and it has x which is a variable in the integral fun0. How can I set a variable x to first calculate the integral f2 over z, and then integral f3 over x? (Of course, when I set x=some number I obtain a curve or a set of curves if x=0:0.1:1 and make for j = 1:length(x), but I doubt about this result, because the behavior of curves is not correct).
clear all, close all
n=1;
t=1;
r=1;
s=0:0.2:10;
for i = 1:length(s)
k=s(i);
fun2=@(z)(z.*exp(2.*n.*t.*z.^2).*(besselj(0,(k.*z.*x)))./sqrt(1-z.^2));
f2(i,:)=integral(fun2,0,1);
fun0=@(x)(((((x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/(r.^2)).^2)))).*f2(i));
f3(i,:)=integral(fun0,0,inf);
end
Cor=8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi)))).*f3;
plot(s,Cor,'b-');

Risposta accettata

Torsten
Torsten il 16 Dic 2022
Modificato: Torsten il 16 Dic 2022
n = 1 ;
t = 1;
r = 1;
s = 0:0.2:10;
fun = @(x,z,k) x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/r^2).^2 .* z.*exp(2*n*t.*z.^2).*besselj(0,k.*z.*x)./sqrt(1-z.^2);
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s)
f3 = 1×51
0.2959 0.2948 0.2915 0.2860 0.2784 0.2690 0.2579 0.2454 0.2316 0.2169 0.2015 0.1857 0.1697 0.1538 0.1381 0.1229 0.1083 0.0945 0.0815 0.0694 0.0583 0.0483 0.0392 0.0311 0.0240 0.0177 0.0123 0.0077 0.0038 0.0005
Cor = 8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi))))*f3
Cor = 1×51
1.0000 0.9962 0.9849 0.9663 0.9409 0.9091 0.8716 0.8292 0.7828 0.7331 0.6811 0.6276 0.5735 0.5196 0.4667 0.4153 0.3659 0.3192 0.2753 0.2346 0.1972 0.1631 0.1324 0.1051 0.0809 0.0598 0.0416 0.0259 0.0127 0.0017
plot(s,Cor,'b-')
grid on
  1 Commento
Hexe
Hexe il 16 Dic 2022
Dear Torsten, thank you very much :) It solves my problem and now I will know what to do with integrals like these.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Thermodynamics & Statistical Physics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by