How can we find the intersection between two planes in higher dimensions (4d space and above)?
11 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
How can we find the intersection between two planes in higher dimensions (4d space and above)? For example we have the following 2 planes in 4d:
Plane 1
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Plane 2
P11= [191269260.712188 -136769230.769231 0 0];
P22=[ -136769230.769231 259653876.096803 -136769230.769231 0];
P33= [0 -136769230.769231 259653876.096803 -136769230.769231];
P44=[0 0 -136769230.769231 129826938.048402];
2 Commenti
Jan
il 6 Feb 2023
What are your inputs? Du you mean 2D planes in 4D space? 4 Points? 1 Point and 2 lines in the plane?
Matt J
il 6 Feb 2023
It is more compact to describe the planes in equation form Aeq*x=beq. For plane 1, this would be
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Aeq=null([P2;P3;P4]-P1)'
beq=Aeq*P1'
and similarly for plane 2.
Risposta accettata
Matt J
il 6 Feb 2023
Modificato: Matt J
il 6 Feb 2023
In general, intersections of two hyperplanes would be expressed algebraically by a 2xN set of linear equations Aeq*x=beq. A geometric description can be made in terms of an origin vector, which gives the position of some point in the intersection space, and a set of direction vectors which span the linear space parallel to it. Example:
Aeq=[1,2,3,4;
5,6,7,8];
beq=[5;7];
assert( rank([Aeq,beq])==rank(Aeq) , 'Hyperplanes do not intersect')
origin = pinv(Aeq)*beq
directions = null(Aeq)
9 Commenti
Torsten
il 17 Giu 2023
Modificato: Torsten
il 17 Giu 2023
The complete set of solutions of a linear systems of equations (interpreted as the intersection of the hyperplanes) is given by one solution of the inhomogeneous system (origin) + the solutions of the homogeneous system (directions).
Read the last two paragraphs (Homogeneous solution set, Relation to nonhomogeneous systems) under
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Systems of Nonlinear Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!