# I'm having a problem averaging multiple curves using interp1

1 visualizzazione (ultimi 30 giorni)
Philip Krämer il 11 Mar 2023
Commentato: Chris il 12 Mar 2023
Hi everyone.
I have multiple polarisation curves that I want to display the averge of. I tried using linspace to create a base vector and interpolating using interp1. Unfortunately that hasn't properly worked for me and I was hoping someone might be able to help.
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Chris il 11 Mar 2023
Modificato: Chris il 11 Mar 2023
1. You take the mean and max of the U values; I believe you want the I values instead.
2. You have plenty of data points, so the default linear interpolation will follow the trend better.
3. Some data at the end will have to be excluded from the mean curve. You could use the 'omitnan' flag, but that will cause a discontinuity in the curve.
% Mittelung mehrerer Messungen
clearvars
[filenames, pathname] = uigetfile('MultiSelect', 'on', '*.*');
fullname = fullfile(pathname,filenames);
clear savename
for z = 1:length(fullname)
end
IVC_mean = cell (3,length(fullname));
var = zeros(1,length(fullname));
Names = string(var);
Imax = zeros (1,length(fullname));
Umax = zeros (1,length(fullname));
Umin = zeros (1,length(fullname));
for z = 1:length(fullname)
% Messdaten
Ewe = Daten{1,z}(:,7);
I = Daten{1,z}(:,8).*1000;
Ismooth = smoothdata(I,'sgolay');
% Details der Messung
savename{1,z} = extractBefore(filenames{1,z},".");
Names(z) = savename {1,z};
% sortieren
IVC_mean{1,z} = Ewe;
IVC_mean{2,z} = abs(Ismooth);
IVC_mean{3,z} = extractAfter(strrep(savename{1,z},'_',' '),' ');
% % outlier
% pp = isoutlier(IVC_mean{2,z});
% ind = find(pp);
% IVC_mean{4,z} = ind;
% IVC_mean{5,z} = IVC_mean{2,z};
% IVC_mean{5,z}(ind) = NaN;
% einzeln plot
h = scatter(IVC_mean{2,z},IVC_mean{1,z});
xlabel(['I']);ylabel(['U']);
hold on
% Grenzen für xq
% IVC_mean{6,z} = min(IVC_mean{1,z});
% IVC_mean{7,z} = max(IVC_mean{1,z});
IVC_mean{6,z} = min(IVC_mean{2,z});
IVC_mean{7,z} = max(IVC_mean{2,z});
Umin(z) = IVC_mean{6,z};
Umax(z) = IVC_mean{7,z};
end
%
% Interpolation
Umin = min(Umin);
Umax = max(Umax);
% vorgegebener Bezugsvektor
UC = linspace(Umin,Umax,10000);
for z = 1:length(fullname)
% IVC_mean{8,z} = interp1(IVC_mean{2,z},IVC_mean{1,z},UC,'spline');
IVC_mean{8,z} = interp1(IVC_mean{2,z},IVC_mean{1,z},UC,'linear');
h2 = plot(UC,IVC_mean{8,z},'k--','LineWidth',2);
hold on
end
mfit = mean(cat(1,IVC_mean{8,:}));
plot(UC, mfit,'m','LineWidth',2);
##### 5 CommentiMostra 3 commenti meno recentiNascondi 3 commenti meno recenti
Philip Krämer il 12 Mar 2023
Chris il 12 Mar 2023
Bitte sehr!

Accedi per commentare.

### Più risposte (1)

Walter Roberson il 11 Mar 2023
h = scatter(IVC_mean{2,z},IVC_mean{1,z});
So {1} is used as y values and {2} is used as x values.
IVC_mean{6,z} = min(IVC_mean{1,z});
IVC_mean{7,z} = max(IVC_mean{1,z});
min and max of the y values.
Umin = min(Umin);
Umax = max(Umax);
UC = linspace(Umin,Umax,10000);
smallest y and greatest y
IVC_mean{8,z} = interp1(IVC_mean{2,z},IVC_mean{1,z},UC,'spline');
you pass in known x values and corresponding known y values and you query based on UC, which is based on y values, not on x values.
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Categorie

Scopri di più su Interpolation in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by