lsqnonlin initial conditions (transcendental equation)
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hey all,
I am trying to fit a transcendental equation to some data points but I am coming across the issue where lsqnonlin ends up giving solutions ("possible minima") that heavily depend upon the choice of initial condition. I am wondering if this is because my choice of initial condition simply is incorrect or if there is something else going on and how I could better probe what exactly is happening. I have attached the data_points below and my code is:
a1 = 20;
a2 = 10^-4;
x_data = importdata("x_data.mat");
y_data = importdata("y_data.mat");
options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','StepTolerance',1e-12,'FunctionTolerance',1e-12,'Display','iter');
a0 = [10^-3,1,5,2]; %initial guess%
m = @(a)sqrt(a2^2 + (x_data.*a(2)).^2 + a(3).*(1./a1).^a(4));
factor1 = @(a)sqrt((x_data+1i.*(m(a)./a(2)))./(x_data-1i.*(m(a)./a(2))));
b = @(a)(1/2) - 1i.*(y_data./a(2));
factor2 = @(a)double(gamma(sym(complex(1-b(a))))./gamma(sym(complex(b(a)))));
factor3 = @(a)(2./(a(1).*sqrt(x_data.^2+(m(a).^2)./a(2).^2))).^(2.*1i.*y_data./a(2));
func = @(a)factor1(a).*factor2(a).*factor3(a) - 1i;
[k,resnorm,residual,exitflag,output] = lsqnonlin(func,a0,[],[],options)
Thanks.
2 Commenti
Risposta accettata
Matt J
il 20 Mar 2023
You can split the model function into real and imaginary parts,
func=@(a) [real(func(a)); imag(func(a))];
[k,resnorm,residual,exitflag,output] = lsqnonlin(func,a0,[],[],options)
4 Commenti
Matt J
il 20 Mar 2023
Modificato: Matt J
il 20 Mar 2023
When you say you are getting highly different solutions for different initial points, are you getting very different resnorms in each case as well? If not, the problem is simply ill-posed: you have non-unique solutions.
If you are getting very different resnorms, then you are probably getting stuck at local minima, in which case you could contemplate doing a 4D parameter search over the different k(i) combinations for a more accurate initial guess k0. This shouldn't be very computationally demanding, since the operations in func() are very well-vectorized. Can you write down lb,ub bounds on the parameters? If so, you can download ndgridVecs and create grid search data quite easily, e.g. as below,
ranges=arrayfun(@(l,u)linspace(l,u,30), lb,ub,'uni',0); %30-point discretization
[~,~,K1,K2,K3,K4]=ndgridVecs(1,1,ranges{:}); %grid search coordinates
values = vecnorm(func(K1,K2,K3,K4)); %rewrite func to support 4-argument input syntax
[~,i]=min(values,[],'all','linear');
k0=[K1(i), K2(i), K3(i), K4(i)]; %initial point
Più risposte (1)
John D'Errico
il 20 Mar 2023
This does not make sense.
x_data = importdata("x_data.mat");
x_data
Your x_data vector is identically constant values.
unique(x_data)
Why do you expect any model to be fit here?
Vedere anche
Categorie
Scopri di più su Dialog Boxes in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!