hey,
what you could do is as follows. to simplify this, let's assume that the length of the data is 1000.
- divide your data, on your example you are representing the data with 8 averages and their standard deviations.
-  now, we know that each sequence has 125 values. we can calculate average and standard deviation from every 125 values. 
- you can edit this and put in a for loop and save into structure or cell, up to your prefferences.
- now you will have 8 averages and 8 stds, which you can plot.
- this was just a guidance to give you some ideas, hope it helped.
edit: trying to do this with your numbers. code below.
x = [0.00469  0.0087  0.01  0.011225  0.012467  0.016228  0.017322  0.017945  0.020644  0.021309  0.022041  0.022509  0.034475  0.034943  0.037016  0.037295  0.041646  0.04452  0.044746  0.045893  0.050003  0.050831  0.052807  0.05684  0.062056  0.064304  0.06551  0.065621  0.072389  0.072631  0.072915  0.074093  0.074747  0.079348  0.081387  0.083463  0.087077  0.08749  0.088706  0.091313  0.091354  0.097794  0.104067  0.105914  0.108019  0.116753  0.118103  0.119401  0.121492  0.12249  0.124109  0.125496  0.128734  0.129008  0.137781  0.140841  0.143406  0.145827  0.149928  0.150054  0.150055  0.15117  0.151272  0.152399  0.152978  0.155543  0.155605  0.157627  0.162498  0.163231  0.16426  0.166012  0.167404  0.167895  0.168325  0.169927  0.17021  0.17072  0.171476  0.172374  0.172385  0.174317  0.175911  0.176255  0.177138  0.180468  0.18445  0.186827  0.188077  0.190074  0.19052  0.193335  0.195153  0.19681  0.200621  0.201303  0.202696  0.203191  0.206947  0.207224  0.212933  0.213877  0.215318  0.215895  0.218079  0.218653  0.222995  0.223679  0.224646  0.226926  0.227495  0.228072  0.230485  0.230836  0.230934  0.232077  0.236197  0.236271  0.237802  0.240445  0.240545  0.240771  0.243432  0.245898  0.245936  0.246707  0.247277  0.248455  0.249176  0.252292  0.254137  0.25564  0.26191  0.262848  0.264155  0.264374  0.265596  0.266928  0.268874  0.269895  0.271001  0.271477  0.272346  0.272498  0.272675  0.273783  0.274057  0.274732  0.276176  0.27695  0.276981  0.277782  0.278918  0.280487  0.28096  0.283195  0.290217  0.292752  0.293241  0.293512  0.294967  0.295209  0.296445  0.29841  0.30115  0.301406  0.301433  0.301987  0.302507  0.303998  0.305792  0.307823  0.308956  0.309897  0.310395  0.311371  0.312571  0.312581  0.313017  0.314869  0.323422  0.3257  0.326314  0.326447  0.326823  0.327552  0.328176  0.330197  0.330345  0.331374  0.334027  0.33448  0.334783  0.335008  0.336672  0.347097  0.3473  0.350075  0.35098  0.352541  0.354958  0.356059  0.357325  0.357805  0.359327  0.359882  0.361282  0.361654  0.361739  0.362249  0.365798  0.365919  0.369304  0.370111  0.372884  0.373315  0.374559  0.376204  0.378897  0.382103  0.388499  0.389041  0.391741  0.392955  0.393078  0.396401  0.396811  0.397709  0.399032  0.401515  0.40249  0.403438  0.403554  0.403809  0.404691  0.407685  0.410673  0.414054  0.415084  0.41748  0.417687  0.418908  0.419548  0.423043  0.424294  0.425136  0.434095  0.435643  0.436709  0.436819  0.439525  0.441809  0.444022  0.450333  0.452903  0.454711  0.455348  0.455923  0.456029  0.456422  0.459604  0.461679  0.462877  0.465959  0.46708  0.471292  0.47498  0.475172  0.475389  0.476659  0.476758  0.476765  0.477031  0.477034  0.477447  0.478575  0.479295  0.480371  0.481492  0.482311  0.482917  0.483132  0.4836  0.484134  0.486336  0.487046  0.487299  0.490746  0.494387  0.495256  0.497342  0.500271  0.500317  0.501695  0.502911  0.50451  0.504943  0.505055  0.508514  0.508973  0.509516  0.509849  0.510524  0.513764  0.514342  0.514723  0.514872  0.515409  0.515937  0.518875  0.520119  0.521912  0.522053  0.525219  0.527065  0.527217  0.53127  0.531997  0.532328  0.534683  0.538023  0.538163  0.538769  0.539404  0.541226  0.541465  0.541967  0.543132  0.543483  0.543512  0.544096  0.544357  0.544932  0.545626  0.546518  0.547217  0.549758  0.550612  0.550631  0.551151  0.552452  0.552865  0.553143  0.553771  0.555098  0.555723  0.556046  0.556692  0.557898  0.559617  0.559632  0.56653  0.567009  0.568145  0.573398  0.574594  0.575274  0.577585  0.578313  0.578885  0.579987  0.580432  0.581109  0.58285  0.583498  0.583886  0.584921  0.587065  0.587519  0.587579  0.58771  0.589172  0.589602  0.589997  0.594309  0.595283  0.595905  0.5987  0.601807  0.602987  0.603453  0.607003  0.607106  0.608573  0.608845  0.609965  0.610698  0.611156  0.615384  0.615906  0.618809  0.621403  0.62278  0.623397  0.627736  0.628118  0.630982  0.63133  0.631341  0.632167  0.632516  0.632786  0.632893  0.634447  0.636308  0.636647  0.637394  0.637613  0.638679  0.63942  0.639475  0.639945  0.640261  0.64105  0.644439  0.644543  0.646717  0.64716  0.647211  0.647263  0.647424  0.64771  0.649749  0.650591  0.651154  0.654115  0.654478  0.655164  0.660403  0.661052  0.661303  0.661616  0.662467  0.662622  0.664465  0.667322  0.671025  0.67111  0.671989  0.675536  0.679479  0.680493  0.681191  0.683479  0.685082  0.685352  0.686146  0.686196  0.686225  0.690492  0.690868  0.695468  0.700636  0.701101  0.701509  0.701792  0.702247  0.702317  0.703878  0.703941  0.704887  0.709365  0.709537  0.715553  0.7181  0.720229  0.720494  0.720893  0.72099  0.723134  0.723846  0.724539  0.724879  0.725154  0.726006  0.726598  0.727488  0.728552  0.729348  0.732906  0.733101  0.733333  0.733667  0.734194  0.738271  0.738456  0.739449  0.739952  0.739995  0.741187  0.741756  0.742481  0.742736  0.743023  0.743302  0.74369  0.744724  0.746245  0.746378  0.749414  0.749501  0.749611  0.750031  0.750415  0.751011  0.752337  0.752462  0.755283  0.755985  0.75971  0.760456  0.761379  0.761559  0.761829  0.761839  0.763408  0.763435  0.763856  0.764929  0.767146  0.76726  0.767295  0.768255  0.768529  0.76981  0.770041  0.770768  0.772317  0.77277  0.773795  0.774521  0.774941  0.774967  0.776377  0.777726  0.783486  0.784672  0.784745  0.785747  0.785972  0.790539  0.79066  0.792787  0.793801  0.794247  0.794359  0.794868  0.797406  0.799207  0.799266  0.800136  0.80046  0.801149  0.802112  0.802393  0.805799  0.807205  0.810318  0.812475  0.812526  0.822351  0.82536  0.8259  0.826454  0.82655  0.827163  0.82873  0.832197  0.833525  0.833627  0.833749  0.834248  0.834451  0.835017  0.835474  0.838612  0.838889  0.842141  0.842475  0.843564  0.845216  0.85065  0.852407  0.85619  0.856884  0.857085  0.861557  0.86232  0.863489  0.866427  0.867138  0.867824  0.867991  0.868751  0.869847  0.870389  0.871553  0.874963  0.877214  0.879876  0.880946  0.881041  0.881686  0.884276  0.886394  0.88654  0.889024  0.895075  0.895763  0.896709  0.89899  0.901667  0.92286  0.928428  0.931573  0.932508  0.958969  0.959285  0.966525  0.967296  0.968492  0.969734  0.972318  0.972324  0.974141 ];
y = [0.80528  0.64562  0.7  0.793458  0.813043  0.766762  0.734048  0.733398  0.819582  0.756235  0.718495  0.667408  0.629234  0.767601  0.743824  0.590143  0.779554  0.761395  0.822688  0.606969  0.932394  0.662306  0.806961  0.689375  0.867427  0.777223  0.641577  0.608569  0.766644  0.842595  0.65134  0.689746  0.732769  0.777866  0.716936  0.618486  0.569079  0.744086  0.695222  0.614351  0.732562  0.642543  0.671435  0.509444  0.706395  0.453125  0.648561  0.553778  0.78545  0.505204  0.653294  0.660017  0.558387  0.625183  0.662981  0.523873  0.513965  0.618664  0.606449  0.548198  0.5176  0.482032  0.458478  0.531614  0.518083  0.511984  0.487671  0.632311  0.495095  0.563435  0.559764  0.567523  0.594687  0.579135  0.661833  0.623742  0.573631  0.593816  0.533158  0.624416  0.628195  0.612084  0.633708  0.46468  0.666943  0.415515  0.489189  0.408365  0.593812  0.496433  0.473808  0.516928  0.588119  0.493858  0.543793  0.576961  0.662306  0.577834  0.464187  0.648496  0.617673  0.556932  0.570741  0.59753  0.512099  0.482524  0.590297  0.522105  0.425006  0.607814  0.51804  0.46804  0.623267  0.456525  0.432922  0.459532  0.601528  0.578053  0.451693  0.40878  0.500278  0.514728  0.472733  0.47005  0.595265  0.553248  0.507601  0.545793  0.557765  0.578889  0.511815  0.583396  0.497402  0.472937  0.497564  0.511449  0.453331  0.523376  0.498627  0.523775  0.511857  0.447116  0.474522  0.56627  0.570633  0.576563  0.493617  0.426735  0.564  0.524418  0.497071  0.449833  0.537249  0.534227  0.45032  0.542313  0.514466  0.362698  0.486351  0.500021  0.460537  0.369117  0.490131  0.544988  0.500021  0.406145  0.414834  0.514665  0.486379  0.380315  0.47957  0.469739  0.518343  0.454518  0.493915  0.519066  0.429586  0.543491  0.462223  0.384842  0.538838  0.413811  0.473397  0.503234  0.439037  0.36836  0.407247  0.452856  0.499255  0.398915  0.464977  0.52162  0.515723  0.549254  0.437427  0.397578  0.475363  0.407611  0.386477  0.441829  0.427243  0.324321  0.451728  0.490215  0.413568  0.441685  0.448713  0.520786  0.423857  0.390612  0.364845  0.480033  0.389663  0.38327  0.431223  0.460976  0.443638  0.328576  0.437218  0.416967  0.366405  0.335965  0.335873  0.412749  0.351164  0.351016  0.296967  0.372882  0.512175  0.387724  0.422714  0.352144  0.426664  0.356864  0.322462  0.291183  0.342015  0.427482  0.330716  0.385752  0.329791  0.413751  0.291167  0.452068  0.309299  0.430213  0.405468  0.398113  0.327577  0.314028  0.315712  0.295502  0.32361  0.324911  0.310893  0.281979  0.34924  0.402864  0.283832  0.267568  0.25448  0.298571  0.37767  0.373868  0.278857  0.214147  0.420911  0.291114  0.335709  0.33995  0.312315  0.303846  0.256152  0.360429  0.360716  0.401722  0.32595  0.370817  0.311387  0.340964  0.285687  0.311058  0.455486  0.357921  0.290849  0.312112  0.33266  0.214926  0.285677  0.193088  0.255912  0.247581  0.332855  0.269401  0.251248  0.27398  0.283548  0.375222  0.303604  0.234625  0.197771  0.273931  0.279426  0.28364  0.20535  0.248702  0.237436  0.205881  0.275331  0.201725  0.316321  0.226597  0.306648  0.306979  0.328476  0.237104  0.239884  0.213015  0.209803  0.300632  0.282938  0.182864  0.18531  0.228802  0.26723  0.222337  0.265782  0.293654  0.197893  0.261277  0.276125  0.325253  0.251959  0.231881  0.250884  0.354749  0.252916  0.262588  0.261132  0.305295  0.242703  0.30563  0.214794  0.26266  0.304594  0.274017  0.252107  0.248801  0.258919  0.250944  0.227974  0.237676  0.214035  0.2405  0.255753  0.256582  0.208805  0.274378  0.307904  0.118621  0.196045  0.283171  0.159809  0.160839  0.255256  0.198779  0.232843  0.325619  0.257546  0.261782  0.249742  0.157724  0.112924  0.173462  0.248  0.220729  0.203253  0.245482  0.170845  0.17999  0.034075  0.196457  0.158329  0.218735  0.285625  0.162757  0.233924  0.288465  0.159826  0.152422  0.165816  0.154683  0.229171  0.219591  0.272257  0.122807  0.158686  0.23933  0.243433  0.202875  0.192389  0.171271  0.229539  0.141984  0.174124  0.194803  0.146364  0.20925  0.170598  0.146018  0.263825  0.195842  0.210249  0.086206  0.177546  0.187132  0.155542  0.168859  0.070714  0.19417  0.168472  0.168872  0.127005  0.168236  0.177539  0.154429  0.165554  0.217187  0.163961  0.13325  0.186773  0.220556  0.170665  0.169902  0.112926  0.12719  0.112295  0.099143  0.100306  0.071185  0.13027  0.109643  0.117658  0.081351  0.075564  0.172287  0.136254  0.201121  0.102328  0.08915  0.170521  0.068228  0.168656  0.134089  0.116606  0.206608  0.162707  0.182244  0.153269  0.141955  0.128071  0.038279  0.107102  0.143664  0.127989  0.182769  0.084405  0.133795  0.151992  0.114101  0.131188  0.121489  0.047829  0.110572  0.080972  0.156716  0.122272  0.12134  0.083891  0.128522  0.077419  0.081904  0.08787  0.059451  0.092805  0.046723  0.112831  0.131469  0.130663  0.139785  0.063652  0.127872  0.086438  0.144811  0.082339  0.120753  0.11531  0.138242  0.121368  0.128117  0.120017  0.122149  0.111215  0.092866  0.124989  0.107351  0.047923  0.063395  0.111479  0.067648  0.096739  0.043001  0.073596  0.021702  0.130857  0.108312  0.092628  0.033314  0.056733  0.079198  0.068921  0.068764  0.109586  0.106157  0.129783  0.104211  0.113155  0.03192  0.092337  0.051723  0.072301  0.040144  0.131064  0.066336  0.095863  0.120184  0.093323  0.102077  0.093394  0.051252  0.052294  0.037677  0.086021  0.034701  0.083175  0.087888  0.054015  0.021229  0.091835  0.075401  0.029097  0.075937  0.084842  0.035379  0.031658  0.054243  0.085288  0.101882  0.030662  0.040419  0.071324  0.038831  -0.00071  0.055344  0.02901  0.073855  0.033783  0.090942  0.063111  0.063775  0.031704  0.041681  0.082311  0.075116  0.047857  0.08169  0.000464  0.031116  0.069075  0.032482  0.024482  0.031929  0.019796  0.051616  0.049967  0.058261  0.039221  0.056633  0.021771  0.02173  0.044482  0.006824  0.01219  0.008423  0.014469  0.03076  0.008262  0.038364  0.011016  0.025781  0.013119  0.013553  0.018508  0.033083  0.017039  0.025885  0.023107  0.066768  0.02533  0.038817  0.004143  0.044104  0.048077  0.042264  0.002508  0.01967  0.028636  -0.00033  0.004452  0.017808  0.015836  0.039663  0.022492  0.043269  0.064936 ];
    avgs(q) = mean(y(1+1*(q-1):seq*q));
    stds(q) = std(y(1+1*(q-1):seq*q));
disp(avgs)
    0.6563    0.5904    0.5384    0.4805    0.4304    0.3834    0.3408    0.3019
disp(stds)
    0.1081    0.1087    0.1200    0.1462    0.1644    0.1818    0.1964    0.2089
While this looks pretty good, there is one small error and that is: I have rounded down the number of sequences, because it was a decimal, which doesn't work for indexing. This means that not all numbers are scanned, probably some are left out.
as you can see, the vector is not split into 8 parts, but into 8.0128 parts, meanwhile the for loop is going only over 8 parts. hope you understand. 
you can either use what i did or you can try to polish and correct it.
hope my answers was helpful. if you think so, i would be glad if you could accept it.