How to calculate and plot ndefinite triple integral?

5 visualizzazioni (ultimi 30 giorni)
I have a triple indefinite integral (image attached).
Here respectively sx = sy = s*sin(a)/sqrt(2) and sz= s*cos(a). Parameter s=0.1 and parameter a changes from 0 to pi/2 – 10 points can be chosen [0 10 20 30 40 50 60 70 80 90]. Is it possible to solve such integral and to obtain the curve – plot(a,F)?
s=0.1;
a = 0:10:90;
fun = @(x,y,z) ((x.*z)./((x.^2+y.^2+z.^2))).*((2*pi)^(3/2))*exp(-(0.5.*sqrt(x.^2+y.^2+z.^2))).*exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))));
f3 = arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p)),a);
plot(a,f3);
  3 Commenti
Hexe
Hexe il 12 Apr 2023
Modificato: Hexe il 12 Apr 2023
You are right. I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much. The inportant thing is that in the second exponent there are 2 vectors: q and s. For the qx and qy sx=sy=s*sin(a)/sqrt(2) and for the qz sz=s*cos(a). Thus the code looks different than the written formula. Or the code for this case muct be written otherwise?
Thank you, I forgot about integration limits: [0, inf, 0, 2*pi, 0, pi].
Torsten
Torsten il 12 Apr 2023
I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much.
There are many more differences.
In your formula:
exp(-0.5.*(x.^2+y.^2+z.^2))
In your code:
exp(-(0.5.*sqrt(x.^2+y.^2+z.^2)))
In your formula:
exp(1i.*x*(s*sin(p)/sqrt(2))+1i.*y*(s*sin(p)/sqrt(2))+1i*z.*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)))
In your code:
exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))))

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 12 Apr 2023
s = 0.1;
a = 0:5:360;
a = a*pi/180;
fun = @(x,y,z,p) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3 = (2*pi)^1.5*arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p),0,Inf,0,2*pi,0,pi),a);
figure(1)
plot(a,real(f3))
figure(2)
plot(a,imag(f3))
  8 Commenti
Torsten
Torsten il 19 Apr 2023
Modificato: Torsten il 19 Apr 2023
Why do you replace s by k and not by m in your code ?
And if you loop over the elements of a, why do you use the arrayfun ? Arrayfun computes the values for f3 for the complete vector a over and over again. I can understand that your code takes a while to finish.
Since the results for f3 are complex-valued, you can only apply surf on abs(f3) or imag(f3) or real(f3), but not f3 itself.
n = 1;
t = 1;
r = 1;
S = 1:0.5:5;
P = 0:10:180;
P = P*pi/180;
for i = 1:numel(S)
s = S(i);
for j = 1:numel(P)
p = P(j);
fun = @(x,y,z) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z* (s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3(i,j) = (2*pi)^1.5*integral3(fun,0,Inf,0,2*pi,0,pi);
end
end
f3
f3 =
Columns 1 through 10 0.2759 + 0.0978i 0.2654 + 0.1215i 0.2546 + 0.1408i 0.2450 + 0.1555i 0.2375 + 0.1655i 0.2330 + 0.1710i 0.2320 + 0.1722i 0.2346 + 0.1689i 0.2405 + 0.1613i 0.2490 + 0.1491i 0.2481 + 0.1379i 0.2262 + 0.1685i 0.2041 + 0.1917i 0.1847 + 0.2080i 0.1700 + 0.2183i 0.1613 + 0.2237i 0.1594 + 0.2247i 0.1644 + 0.2215i 0.1759 + 0.2138i 0.1929 + 0.2008i 0.2134 + 0.1689i 0.1782 + 0.2014i 0.1439 + 0.2231i 0.1145 + 0.2360i 0.0928 + 0.2427i 0.0802 + 0.2455i 0.0776 + 0.2459i 0.0849 + 0.2442i 0.1017 + 0.2396i 0.1268 + 0.2302i 0.1750 + 0.1897i 0.1269 + 0.2193i 0.0816 + 0.2345i 0.0444 + 0.2395i 0.0179 + 0.2392i 0.0031 + 0.2375i 0.0001 + 0.2369i 0.0087 + 0.2377i 0.0288 + 0.2387i 0.0599 + 0.2368i 0.1360 + 0.2006i 0.0769 + 0.2231i 0.0239 + 0.2278i -0.0173 + 0.2221i -0.0451 + 0.2130i -0.0598 + 0.2061i -0.0627 + 0.2044i -0.0540 + 0.2083i -0.0334 + 0.2160i -0.0002 + 0.2235i 0.0991 + 0.2028i 0.0321 + 0.2151i -0.0244 + 0.2074i -0.0651 + 0.1900i -0.0903 + 0.1722i -0.1028 + 0.1605i -0.1050 + 0.1579i -0.0976 + 0.1646i -0.0794 + 0.1787i -0.0481 + 0.1958i 0.0660 + 0.1979i -0.0053 + 0.1987i -0.0608 + 0.1782i -0.0967 + 0.1502i -0.1163 + 0.1255i -0.1247 + 0.1104i -0.1259 + 0.1072i -0.1208 + 0.1159i -0.1073 + 0.1349i -0.0814 + 0.1600i 0.0379 + 0.1880i -0.0342 + 0.1771i -0.0849 + 0.1451i -0.1130 + 0.1090i -0.1249 + 0.0802i -0.1284 + 0.0635i -0.1285 + 0.0602i -0.1263 + 0.0699i -0.1188 + 0.0914i -0.1004 + 0.1218i 0.0149 + 0.1748i -0.0549 + 0.1531i -0.0981 + 0.1121i -0.1165 + 0.0712i -0.1201 + 0.0412i -0.1188 + 0.0250i -0.1180 + 0.0220i -0.1186 + 0.0315i -0.1172 + 0.0532i -0.1072 + 0.0857i Columns 11 through 19 0.2593 + 0.1324i 0.2701 + 0.1111i 0.2801 + 0.0856i 0.2880 + 0.0566i 0.2929 + 0.0252i 0.2940 - 0.0074i 0.2912 - 0.0397i 0.2849 - 0.0702i 0.2759 - 0.0978i 0.2136 + 0.1816i 0.2357 + 0.1553i 0.2566 + 0.1218i 0.2736 + 0.0818i 0.2841 + 0.0369i 0.2866 - 0.0104i 0.2807 - 0.0571i 0.2672 - 0.1003i 0.2481 - 0.1379i 0.1583 + 0.2137i 0.1930 + 0.1877i 0.2267 + 0.1509i 0.2546 + 0.1034i 0.2724 + 0.0476i 0.2768 - 0.0125i 0.2670 - 0.0718i 0.2446 - 0.1251i 0.2134 - 0.1689i 0.1001 + 0.2277i 0.1462 + 0.2071i 0.1925 + 0.1718i 0.2322 + 0.1209i 0.2581 + 0.0570i 0.2649 - 0.0137i 0.2510 - 0.0833i 0.2189 - 0.1438i 0.1750 - 0.1897i 0.0450 + 0.2250i 0.0994 + 0.2139i 0.1566 + 0.1843i 0.2075 + 0.1338i 0.2418 + 0.0651i 0.2514 - 0.0140i 0.2335 - 0.0916i 0.1920 - 0.1564i 0.1360 - 0.2006i -0.0024 + 0.2090i 0.0562 + 0.2094i 0.1212 + 0.1888i 0.1817 + 0.1421i 0.2241 + 0.0715i 0.2368 - 0.0133i 0.2154 - 0.0967i 0.1652 - 0.1631i 0.0991 - 0.2028i -0.0395 + 0.1839i 0.0189 + 0.1963i 0.0882 + 0.1862i 0.1560 + 0.1461i 0.2055 + 0.0763i 0.2215 - 0.0118i 0.1975 - 0.0989i 0.1400 - 0.1649i 0.0660 - 0.1979i -0.0654 + 0.1541i -0.0110 + 0.1773i 0.0589 + 0.1781i 0.1313 + 0.1461i 0.1867 + 0.0796i 0.2060 - 0.0096i 0.1803 - 0.0986i 0.1172 - 0.1627i 0.0379 - 0.1880i -0.0810 + 0.1233i -0.0332 + 0.1550i 0.0340 + 0.1660i 0.1082 + 0.1428i 0.1680 + 0.0814i 0.1906 - 0.0070i 0.1642 - 0.0964i 0.0971 - 0.1576i 0.0149 - 0.1748i
Hexe
Hexe il 21 Apr 2023
Thank you very much. Your notes helped me to build the necessary surface.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Graphics Performance in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by