How to Extract/Fit bell curves under a time series...
    8 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Claudio Iturra
 il 12 Apr 2023
  
    
    
    
    
    Commentato: Star Strider
      
      
 il 13 Apr 2023
            Hello everyone, I'm trying to fit curves under a time series in order to extract the area and compare it. I tried the fit code, but it only takes the maximum and minimum amplitudes, not the entire peak or curve. Is there any way to calculate the area of multiple curves that are in the time series? I will apreciate any help///

2 Commenti
Risposta accettata
  Star Strider
      
      
 il 13 Apr 2023
        
      Modificato: Star Strider
      
      
 il 13 Apr 2023
  
      In order to uniquely identify the peaks and identify their parameters, it is necessary to restrict the range of ‘x’ values for each peak.  That is done by identifying the valleys (‘vys’) between them and using those index values to restrict the regression — 
% clear all,close all;
x = linspace(0,1,1000);
Pos = [1 2 3 5 7 8]/10;
Hgt = [3 4 4 2 2 3];
Wdt = [2 6 3 3 4 6]/100;
for n = 1:length(Pos)
Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end
% my raw time serie consists of a sum of bell curves + some noise....
PeakSig = sum(Gauss);
subplot(1,2,1)
plot(x,PeakSig,'r')
subplot(1,2,2)
plot(x,Gauss,'--',x,PeakSig)
%--------------------
% Now I am looking for the method to reconstruct the 
% bell curves (inverse) from the time series in order to evaluate 
% the area under each bell curves.
[pks,plocs] = findpeaks(PeakSig);
[vys,vlocs] = findpeaks(-PeakSig);
vlocsv = [1 vlocs numel(x)];
objfcn = @(b,x) b(1).*exp(-(x-b(2)).^2/b(3));
for k = 1:numel(plocs)
    idxrng = vlocsv(k) : vlocsv(k+1);
    B0 = [pks(k); x(plocs(k)); 1E-6];
    B(:,k) = fminsearch(@(b) norm(PeakSig(idxrng)-objfcn(b,x(idxrng))), B0);
end
Parameters = array2table(B, 'VariableNames',compose('Peak #%d',1:numel(plocs)), 'RowNames',{'Hgt','Pos','Wdt'})
% figure                                      % Plot Individual Peaks
% tiledlayout(3,2)
% for k = 1:size(B,2)
% nexttile
% Bk = B(:,k)
% plot(x, objfcn(B(:,k),x))
% hold on
% xline(B(2,k), '-', string(B(2,k)))
% hold off
% end
figure
plot(x, PeakSig, '-r')
hold on
for k = 1:size(B,2)
    Gfit(k,:) = objfcn(B(:,k),x);
    plot(x, Gfit(k,:), '--')
    AUC(k) = trapz(x, Gfit(k,:));
end
hold off
text(Parameters{2,:}, Parameters{1,:}, "Area = "+AUC, 'Horiz','left', 'Vert','bottom')
EDIT — (13 Apr 2023 at 14:00)
Forgot about the areas.  Now included.  
.
4 Commenti
  Star Strider
      
      
 il 13 Apr 2023
				As always, my pleasure!  
Filtering isn’t always the complete solution, because there may be peaks that would be passed by the filter yet not be the desired peaks for a specific analysis.  That’s when 'MinPeakProminence' really helps!  
Più risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



