(Answers Dev) Restored edit
I am getting the following error: Error using atan2 Inputs must be real. Error in (line 27) phi_vet = 2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.2),k_3-k_2);
6 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Rafay Khan
il 24 Apr 2023
Modificato: Rafay Khan
il 5 Giu 2023
I have followed the same steps for the double rocker code as I have for the double-crank code, which seemingly works perfectly. I don't understand why the double-rocker code produces an error. Both codes are below.
Double - crank code:
clear ; close all ; clc
%% Parameters
% Bars
l_1 = 0.5; % Length bar a [m]
l_2 = 1.55; % Length bar b [m]
l_3 = 1.3; % Length bar c [m]
l_0 = 1; % Length bar d [m]
% Video
tF = 10; % Final time [s]
fR = 60; % Frame rate [fps]
dt = 1/fR; % Time resolution [s]
time = linspace(0,tF,tF*fR); % Time [s]
% Bar a rotation
w = 2; % Angular velocity [rad/s]
th_vet = w*time';
% Definitions
k_1 = -2*l_0*l_3*sin(th_vet);
k_2 = 2*l_3*(l_1-l_0*cos(th_vet));
k_3 = l_1^2 + l_0^2 - l_2^2 + l_3^2 - 2*l_1*l_0*cos(th_vet);
% phi
phi_vet = 2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.^2),k_3-k_2);
% alpha
alpha_vet = atan2(-l_0*sin(th_vet)+l_3*sin(phi_vet),l_1-l_0*cos(th_vet)+l_3*cos(phi_vet));
point_A_x_cum = l_0*cos(th_vet); % Point A cummulative
point_A_y_cum = l_0*sin(th_vet); % Point A cummulative
point_B_x_cum = l_1+l_3*cos(phi_vet); % Point B cummulative
point_B_y_cum = l_3*sin(phi_vet); % Point B cummulative
%% Animation
color = cool(5); % Colormap
figure
% set(gcf,'Position',[50 50 1280 720]) % YouTube: 720p
% set(gcf,'Position',[50 50 854 480]) % YouTube: 480p
set(gcf,'Position',[50 50 640 640]) % Social
hold on ; grid on ; box on ; axis equal
set(gca,'FontName','Verdana','FontSize',18)
title('Four-bar linkage')
% Create and open video writer object
v = VideoWriter('four_bar_linkage.mp4','MPEG-4');
v.Quality = 100;
v.FrameRate = fR;
open(v);
for i=1:length(time)
cla
% Angles
th = th_vet(i);
phi = phi_vet(i);
alpha = alpha_vet(i);
% Bar 1
bar_1_x = [0 l_0*cos(th)];
bar_1_y = [0 l_0*sin(th)];
% Bar 2
bar_2_x = [l_0*cos(th) l_0*cos(th)+l_2*cos(alpha)];
bar_2_y = [l_0*sin(th) l_0*sin(th)+l_2*sin(alpha)];
% Bar 3
bar_3_x = [l_1 l_1+l_3*cos(phi)];
bar_3_y = [0 l_3*sin(phi)];
% Trajectory
% Point A
plot(point_A_x_cum(1:i),point_A_y_cum(1:i),'Color',color(1,:),'LineWidth',3) % Point A trajectory
% Point B
plot(point_B_x_cum(1:i),point_B_y_cum(1:i),'Color',color(5,:),'LineWidth',3) % Point B trajectory
% Fixed bar
plot([bar_1_x(1) bar_3_x(1)],[0 0],'k','LineWidth',7) % Bar 0
% Bars attached to fixed bar
plot(bar_1_x,bar_1_y,'Color',color(2,:),'LineWidth',7) % Bar 1
plot(bar_3_x,bar_3_y,'Color',color(4,:),'LineWidth',7) % Bar 3
% Bearings
plot(bar_1_x(1),bar_1_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O
plot(bar_3_x(1),bar_3_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O'
% Bar 2
plot(bar_2_x,bar_2_y,'Color',color(3,:),'LineWidth',7) % Bar 2
% Points
plot(bar_2_x(1),bar_2_y(1),'ko','MarkerFaceColor',color(1,:),'MarkerSize',10) % Point A
plot(bar_3_x(end),bar_3_y(end),'ko','MarkerFaceColor',color(5,:),'MarkerSize',10) % Point B
%Setting axes limits
x_range = [point_A_x_cum ; point_B_x_cum];
y_range = [point_A_y_cum ; point_B_y_cum];
grid on;
set(gca,'xlim',[min(x_range)-0.2*(max(x_range)-min(x_range))
max(x_range)+0.2*(max(x_range)-min(x_range))]...
,'ylim',[min(y_range)-0.2*(max(y_range)-min(y_range))
max(y_range)+0.2*(max(y_range)-min(y_range))])
set(gca,'xtick',[],'ytick',[])
frame = getframe(gcf);
writeVideo(v,frame);
end
close(v);
Double - Rocker code:
clear ; close all ; clc
%% Parameters
% Bars
l_1 = 1.3; % Length bar a [m]
l_2 = 1.55; % Length bar b [m]
l_3 = 0.5; % Length bar c [m]
l_0 = 1; % Length bar d [m]
% Video
tF = 10; % Final time [s]
fR = 60; % Frame rate [fps]
dt = 1/fR; % Time resolution [s]
time = linspace(0,tF,tF*fR); % Time [s]
% Bar a rotation
w = 2; % Angular velocity [rad/s]
th_vet = w*time';
% Definitions
k_1 = -2*l_1*l_3*sin(th_vet);
k_2 = 2*l_3*(l_0-l_1*cos(th_vet));
k_3 = l_0^2 + l_1^2 - l_2^2 + l_3^2 - 2*l_0*l_1*cos(th_vet);
% phi
phi_vet = double(2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.^2),k_3-k_2));
% alpha
alpha_vet = atan2(-l_1*sin(th_vet)+l_3*sin(phi_vet),l_0-l_1*cos(th_vet)+l_3*cos(phi_vet));
point_A_x_cum = l_1*cos(th_vet); % Point A cummulative
point_A_y_cum = l_1*sin(th_vet); % Point A cummulative
point_B_x_cum = l_0+l_3*cos(phi_vet); % Point B cummulative
point_B_y_cum = l_3*sin(phi_vet); % Point B cummulative
%% Animation
color = cool(5); % Colormap
figure
% set(gcf,'Position',[50 50 1280 720]) % YouTube: 720p
% set(gcf,'Position',[50 50 854 480]) % YouTube: 480p
set(gcf,'Position',[50 50 640 640]) % Social
hold on ; grid on ; box on ; axis equal
set(gca,'FontName','Verdana','FontSize',18)
title('Four-bar linkage')
% Create and open video writer object
v = VideoWriter('double_rocker_four_bar_linkage.mp4','MPEG-4');
v.Quality = 100;
v.FrameRate = fR;
open(v);
for i=1:length(time)
cla
% Angles
th = th_vet(i);
phi = phi_vet(i);
alpha = alpha_vet(i);
% Bar 1
bar_1_x = [0 l_1*cos(th)];
bar_1_y = [0 l_1*sin(th)];
% Bar 2
bar_2_x = [l_1*cos(th) l_1*cos(th)+l_2*cos(alpha)];
bar_2_y = [l_1*sin(th) l_1*sin(th)+l_2*sin(alpha)];
% Bar 3
bar_3_x = [l_0 l_0+l_3*cos(phi)];
bar_3_y = [0 l_3*sin(phi)];
% Trajectory
% Point A
plot(point_A_x_cum(1:i),point_A_y_cum(1:i),'Color',color(1,:),'LineWidth',3) % Point A trajectory
% Point B
plot(point_B_x_cum(1:i),point_B_y_cum(1:i),'Color',color(5,:),'LineWidth',3) % Point B trajectory
% Fixed bar
plot([ bar_3_x(1)],[0 0],'k','LineWidth',7) % Bar 0
% Bars attached to fixed bar
plot(bar_1_x,bar_1_y,'Color',color(2,:),'LineWidth',7) % Bar 1
plot(bar_3_x,bar_3_y,'Color',color(4,:),'LineWidth',7) % Bar 3
% Bearings
plot(bar_1_x(1),bar_1_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O
plot(bar_3_x(1),bar_3_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O'
% Bar 2
plot(bar_2_x,bar_2_y,'Color',color(3,:),'LineWidth',7) % Bar 2
% Points
plot(bar_2_x(1),bar_2_y(1),'ko','MarkerFaceColor',color(1,:),'MarkerSize',10) % Point A
plot(bar_3_x(end),bar_3_y(end),'ko','MarkerFaceColor',color(5,:),'MarkerSize',10) % Point B
%Setting axes limits
x_range = [point_A_x_cum ; point_B_x_cum];
y_range = [point_A_y_cum ; point_B_y_cum];
set(gca,'xlim',[min(x_range)-0.2*(max(x_range)-min(x_range))
max(x_range)+0.2*(max(x_range)-min(x_range))]...
,'ylim',[min(y_range)-0.2*(max(y_range)-min(y_range))
max(y_range)+0.2*(max(y_range)-min(y_range))])
set(gca,'xtick',[],'ytick',[])
frame = getframe(gcf);
writeVideo(v,frame);
end
close(v);
Risposta accettata
chicken vector
il 24 Apr 2023
Modificato: chicken vector
il 24 Apr 2023
The term inside the square roort has some negative values, thus producing imaginary numbers.
sqrt(k_1.^2+k_2.^2-k_3.^2)
I am not really sure about what k_1, k_2 and k_3 are, but I think the problem is related to the fact that in a double rocker the two side bars do not perform a complete rotation, but your code thinks they do, trying to use angles that are physically impossible to reach.
For example I see that the starting position of your animation is already infeasible.
If you share some of the theory you used for the code, I can probably be more helpful.
8 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Annotations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!