A faster and more compact way to create a list of distances among all the pairs of points

1 visualizzazione (ultimi 30 giorni)
Hi, could you suggest a faster and more compact way to create a list of distances among all the pairs of points?
My attempt here below:
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Plot just to see the 6 points
plot(x,y,'o','MarkerFaceColor','b','markersize',15)
xlim([0 10])
ylim([0 10])
% Calculate the distances among each pair of points
Z = squareform(pdist([x' y']));
% Create a list that includes 3 elements: i-point ID, j-point ID, distance(i,j)
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
list(k,:) = [i j Z(i,j)];
k = k + 1;
end
end
list,
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

Risposta accettata

chicken vector
chicken vector il 29 Apr 2023
Modificato: chicken vector il 29 Apr 2023
N = 1e4;
x = randi(10,N,1);
y = randi(10,N,1);
tic
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorIdx = (1 : size(xIdx, 1))' > (1 : size(xIdx, 2));
xy = [x(:), y(:)];
dist = pdist2(xy, xy);
distPdist = dist(vectorIdx);
list = [xIdx(vectorIdx) , ...
yIdx(vectorIdx) , ...
distPdist]
list = 49995000×3
1.0000 2.0000 5.3852 1.0000 3.0000 6.7082 1.0000 4.0000 3.0000 1.0000 5.0000 5.8310 1.0000 6.0000 8.6023 1.0000 7.0000 2.2361 1.0000 8.0000 8.5440 1.0000 9.0000 8.5440 1.0000 10.0000 5.0000 1.0000 11.0000 10.8167
toc
Elapsed time is 2.501384 seconds.

Più risposte (2)

Image Analyst
Image Analyst il 28 Apr 2023
Try pdist2
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
xy = [x(:), y(:)]
xy = 6×2
1 1 2 2 2 3 3 7 4 2 5 5
% Get distances between every (x,y) point and every other (x,y) point:
distances = pdist2(xy, xy)
distances = 6×6
0 1.4142 2.2361 6.3246 3.1623 5.6569 1.4142 0 1.0000 5.0990 2.0000 4.2426 2.2361 1.0000 0 4.1231 2.2361 3.6056 6.3246 5.0990 4.1231 0 5.0990 2.8284 3.1623 2.0000 2.2361 5.0990 0 3.1623 5.6569 4.2426 3.6056 2.8284 3.1623 0
  12 Commenti
Image Analyst
Image Analyst il 28 Apr 2023
No, I must be thinking of the old way. Anyway, you can post a "final" fixed up program for a new answer and he can accept that.
Sim
Sim il 29 Apr 2023
Thanks a lot both @Image Analyst and @chicken vector!!
If @chicken vector you want to re-post an Answer as @Image Analyst suggested I will accept it :-) Meanwhile, obviously, I will upvote both :-)

Accedi per commentare.


chicken vector
chicken vector il 28 Apr 2023
Modificato: chicken vector il 28 Apr 2023
You can build the indeces without for loop:
N = 5e2;
x = randi(10,1,N);
y = randi(10,1,N);
% Loop method:
tic;
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
loopList(k,:) = [i j];
k = k + 1;
end
end
loopTime = toc;
% Vectorised method:
tic;
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorList = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2)))];
vectorTime = toc;
fprintf("Time with for loop: %.3f seconds\n", loopTime)
Time with for loop: 0.988 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can also increase the speed for computing the distance with the following:
% Squareform method:
tic
squareFormZ = squareform(pdist([x' y']));
squareFormTime = toc;
% Vectorised method:
tic;
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
vectorZ = sqrt(deltaX(:).^2 + deltaY(:).^2);
vectorTime = toc;
fprintf("Time with squareform: %.3f seconds\n", squareFormTime)
Time with squareform: 0.072 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can build your original list with the following wrapped up:
% Data:
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Initialise indeces:
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
% Initialise elements distribution:
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
% Compute distances:
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
% Re-arrange to vector:
deltaX = deltaX((1 : size(deltaX, 1))' > (1 : size(deltaX, 2)));
deltaY = deltaY((1 : size(deltaY, 1))' > (1 : size(deltaY, 2)));
% Build lsit:
list = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2))) , ...
sqrt(deltaX.^2 + deltaY.^2)]
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

Categorie

Scopri di più su Performance and Memory in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by