# Multioutput Regression models in MATLAB

50 visualizzazioni (ultimi 30 giorni)
Alejandro Plata il 5 Giu 2023
Modificato: Ive J il 8 Giu 2023
I am working on a project where I need to predict multiple response variables for a given data set likely using random forests or boositng. Are there any functions I could use that might provide what I am looking for. Basically, what I mean is:
data = (2-D matrix of regressors)
regression model = regression_function(data,response variables)
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Ive J il 6 Giu 2023
I'm not aware of such a function in MATLAB, but you can loop over your target/response variables, and each time fit a new model. Something like this:
models = cell(numel(responseVars), 1);
for k = 1:numel(models)
models{k} = fitrensemble(data(:, [features, responseVars(k)], responseVars(k)); % data table contains all features + outcomes
end
##### 7 CommentiMostra 5 commenti meno recentiNascondi 5 commenti meno recenti
the cyclist il 8 Giu 2023
fitcecoc doesn't fit multiple response variables. It fits a single (categorical) response variable that has more than two categories.
Ive J il 8 Giu 2023
Modificato: Ive J il 8 Giu 2023
Yes, that's correct and I didn't mean fitcecoc is multivariate. For multivariate SVM one could check sklearn. But for this specific problem of OP, I meant something like this by aggregating different responses to see how one label vs others could differ compared to separate SVMs:
y1 = ["y1-1", "y1-2", "y1-3"];
y2 = ["y2-1", "y2-2"];
y_multi = y1' + "_" + y2;
y_multi = categorical(y_multi(:))
y_multi = 6×1 categorical array
y1-1_y2-1 y1-2_y2-1 y1-3_y2-1 y1-1_y2-2 y1-2_y2-2 y1-3_y2-2

Accedi per commentare.

### Più risposte (1)

the cyclist il 6 Giu 2023
The only MATLAB function (that I know of) that can handle multiple response variables is mvregress. Take a look at my answer here for examples with some common design matrices. There are of course examples in the documentation page I linked, as well.
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Categorie

Scopri di più su Gaussian Process Regression in Help Center e File Exchange

R2023a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by