How to solve absolute problem in optimization
10 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello, i want to solve a quadratic optimization problem (prob.Objective =sum((PgridV).^2);), in constrains i have a one variable where i need to find the absolute value of (Pb1dc). so i introduce a variable called 'K' . where -K<=Pb1dc<=K;
- FYI: i have used absoulte value in the following constrains (prob.Constraints.loadBalanceAC=Pb1==Pb1dc-(0.05*K);)
MATLAB solution showing exactely whati want . its working well.
However, when i want to chage the objective function with little modifcation (prob.Objective =sum((PgridV-M).^2);) where M is a reference signal (mean of Pload), when i run the simulation
absolute vaules (K) are not getting exactley what mean for. its showing random values ( K = absolute ((Pb1dc))
clc
clear all
Pload=[0;1;3;4;2;6;9;10;2;4]; % load
N=10;
M=mean(Pload)+zeros(N,1);
Einit1=0.5; % initial energy
E=zeros(N,1);
Emin1 = 0; % mini energy
Emax1 = 3;
dt=1;
prob = optimproblem;
PgridV = optimvar('PgridV',N,'LowerBound',0,'UpperBound',20); % grid power
Pb1= optimvar('Pb1',N,'LowerBound',-1,'UpperBound',1); % ac power
Pb1dc= optimvar('Pb1dc',N,'LowerBound',-1,'UpperBound',1); % dc power
K=optimvar('K',N,'LowerBound',0);% absolute of (Pb1dc)
EbattV1 = optimvar('EbattV1',N,'LowerBound',Emin1,'UpperBound',Emax1); % energy
prob.ObjectiveSense = 'minimize';
% prob.Objective =sum(K.^2);
%prob.Objective =sum((PgridV).^2);
prob.Objective =sum((PgridV-M).^2);
% 1 constrains
prob.Constraints.energyBalance = optimconstr(N);
prob.Constraints.energyBalance(1) = EbattV1(1) == Einit1-Pb1dc(1)*dt; %Its Ploss is constanat
prob.Constraints.energyBalance(2:N-1) = EbattV1(2:N-1) == EbattV1(1:N-2)-Pb1dc(2:N-1)*dt;
prob.Constraints.energyBalance(N) = EbattV1(N) ==Einit1;
% K constrain for Pb1dc modulous
prob.Constraints.kbalance1=optimconstr(N);
prob.Constraints.kbalance1(1:N)=-K(1:N)<=Pb1dc(1:N);
prob.Constraints.kbalance2=optimconstr(N);
prob.Constraints.kbalance2(1:N)=Pb1dc(1:N)<=K(1:N);
% load Balance
prob.Constraints.loadBalance=PgridV+Pb1==Pload;
% loss term
prob.Constraints.loadBalanceAC=Pb1==Pb1dc-(0.05*K);
options = optimoptions(prob.optimoptions,'Display','final');
% options = optimoptions(prob.optimoptions,'Algorithm','interior-point');
[values,fval,exitflag] = solve(prob,'Options',options)
% Parse optmization results
if exitflag <= 0
PgridV = zeros(N,1);
Pb1 = zeros(N,1);
Pb1dc = zeros(N,1);
EbattV1 = zeros(N,1);
K = zeros(N,1);
else
PgridV = values.PgridV ;
Pb1 = values.Pb1;
Pb1dc = values.Pb1dc
EbattV1 = values.EbattV1;
K = values.K
end
.
4 Commenti
Risposte (1)
Vedere anche
Categorie
Scopri di più su Linear Least Squares in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

