Azzera filtri
Azzera filtri

How to smooth the matlab plot to get the desired plot shape?

1 visualizzazione (ultimi 30 giorni)
Is there a way to change figure one to figure 2 (like the lines I draw in red and black color) without changing the values of y1 and y2? Please help.
Figure 1:
Figure 2:
Below is my code
clear all; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
Xi = 0:0.005:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")

Risposta accettata

Angelo Yeo
Angelo Yeo il 24 Lug 2023
I'm not sure about your intention. But the easiest way to smooth signals is moving average. See the doc below for more information about moving average.
https://www.mathworks.com/help/releases/R2023a/matlab/ref/movmean.html
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
%% Smoothing
Yi_smooth = movmean(Yi_spline, 100);
Yj_smooth = movmean(Yj_spline, 100);
h(5) = plot(Xi, Yi_smooth, 'r','linewidth',2);
h(6) = plot(Xi, Yj_smooth, 'k','linewidth',2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
  4 Commenti
Angelo Yeo
Angelo Yeo il 24 Lug 2023
I agree with @Image Analyst. What's your intention, @Haya Ali?
Anyways, if you insist that the resultant curve should pass (0, 0), you can think of something like curve fitting for a quadratic polynomial without a bias term.
clear; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
%% Fitting a quadratic curve
% Set up fittype and options.
[xData, yData] = prepareCurveData( Xi, Yi_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yi_fit = fit( xData, yData, ft, opts );
[xData, yData] = prepareCurveData( Xi, Yj_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yj_fit = fit( xData, yData, ft, opts );
h(5) = plot(Xi, Yi_fit.p1*Xi.^2 + Yi_fit.p2*Xi,'r','linewidth', 2);
h(6) = plot(Xi, Yj_fit.p1*Xi.^2 + Yj_fit.p2*Xi,'k','linewidth', 2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
Haya Ali
Haya Ali il 25 Lug 2023
Actually I was recommended to take avergae of my results 100 times ti smooth my original plot. I didnt want to spend many days on one graph that is why I am trying to get a plot that is smoothest. Thank you so much for your help.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by