# interpolation of coordinates in space using interp3

10 visualizzazioni (ultimi 30 giorni)
Alberto Acri il 1 Ott 2023
Risposto: Torsten il 1 Ott 2023
Hi! I have this coordinate set (C_new). I would like to add additional coordinates using interpolation.
figure
plot3(P(:,1),P(:,2),P(:,3),'k*','Markersize',20);
hold on
plot3(C_new(:,1),C_new(:,2),C_new(:,3),'r.','Markersize',10);
hold off
axis equal
I'm proceeding as follows but I don't know if it's the right procedure:
X = C_new(:,1);
Y = C_new(:,2);
Z = C_new(:,3);
[Xq,Yq,Zq] = meshgrid(X,Y,Z);
Vq = interp3(X,Y,Z,V,Xq,Yq,Zq);
but what should I put for V?
##### 1 CommentoMostra -1 commenti meno recentiNascondi -1 commenti meno recenti
Dyuman Joshi il 1 Ott 2023
You need the equation/relation between the coordinates to interpolate, V contains the values of the the function corresponding to (X,Y,Z).

Accedi per commentare.

### Risposta accettata

Voss il 1 Ott 2023
Modificato: Voss il 1 Ott 2023
interp3 is for interpolating a function of 3 variables, i.e., if you had a function f(X,Y,Z) that returns a value for each (X,Y,Z) then you could use interp3 to interpolate those values to new points in 3D space. In this case there is no function, only the points in 3D space, so you can define a parameterizing variable and use interp1 to interpolate each of your X, Y, Z in terms of that
% original number of points:
n = size(C_new,1);
% number of points you want (change this as desired):
n_new = floor(n/2);
d = sqrt(sum(diff(C_new,1,1).^2,2));
% cumulative distance around the ring, starting with point #1:
t = [0; cumsum(d)];
% new distances (equally-spaced) at which to calculate the new (X,Y,Z) coordinates:
t_new = linspace(t(1),t(end),n_new);
% interp1 C_new from t to t_new:
C_interp = interp1(t,C_new,t_new);
% plot:
figure
plot3(C_interp(:,1),C_interp(:,2),C_interp(:,3),'g.','Markersize',6);
hold on
plot3(C_new(:,1),C_new(:,2),C_new(:,3),'r.','Markersize',10);
axis equal
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Più risposte (1)

Torsten il 1 Ott 2023
Given two points
P1 = [1 3 4];
and
P2 = [3 6 -1];
you can connect them by a line
s = @(t) (1-t)*P1 + t*P2;
and choose points between them:
t = [0:0.2:1];
Pq = reshape(cell2mat(arrayfun(@(t)s(t),t,'UniformOutput',0)),3,[]).'
Pq = 6×3
1.0000 3.0000 4.0000 1.4000 3.6000 3.0000 1.8000 4.2000 2.0000 2.2000 4.8000 1.0000 2.6000 5.4000 -0.0000 3.0000 6.0000 -1.0000
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Categorie

Scopri di più su Interpolation in Help Center e File Exchange

R2021b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by