Finding Coefficients for the particular solution
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Tashanda Rayne
il 18 Ott 2023
Commentato: Walter Roberson
il 22 Ott 2023
I have this code for the homogenous portion of the equation but I need help trying to find the particular part. I am trying to avoid using any ODE functions
%Equation: y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
format long
Coefa = 1;
Coefb = 3;
Coefc = 3.25;
x0 = 0; x1 = 25; Yin = -25, Yder = 4,
B = [Yin,Yder]; N = 1000;
x = linspace(0,25,N);
y = zeros(1,N);
R = zeros(1,2);
R = SecondOderODE1(Coefa,Coefb, Coefc);
if abs(R(1)-R(2))>=1/10^6
A = [exp(R(1)*x0),exp(R(2)*x0); exp(x0*R(1))*R(1), R(2)*exp(x0*R(2))];;
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+C(2)*x(i)^R(2));
figure(1)
plot (x,y)
xlabel ('x')
ylabel('y')
grid on
end
else
A = [x0^R(1), R(1)*x0^(R(1)-1); x0^R(2), log(x0)*(x0^(R(2)-1))];
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+log(abs(x(i)))*C(2)*x(i)^R(2));
end
end
figure(1)
plot(x,y)
xlabel ('x')
ylabel('y')
grid on
0 Commenti
Risposta accettata
David Goodmanson
il 18 Ott 2023
Modificato: David Goodmanson
il 18 Ott 2023
Hi Tashanda,
let u and v be 2x1 vectors with the coefficient of cos as first element, coefficient of sine as second element, and M*u = v.
M = -eye(2,2) +3*[0 1;-1 0] + 3.25*eye(2,2) % since c'= -s s'= c
v = [3;-3/2] % right hand side
u = M\v % particular solution
u =
0.8000 % .8 cos(x) + .4 sin(x)
0.4000
2 Commenti
Walter Roberson
il 18 Ott 2023
This matches the main part of the symbolic solution, without the constants of integration terms needed to account for any boundary conditions.
Più risposte (1)
Walter Roberson
il 18 Ott 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
sympref('abbreviateoutput', false);
sol = dsolve(eqn)
simplify(sol, 'steps', 50)
4 Commenti
Walter Roberson
il 22 Ott 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
sympref('abbreviateoutput', false);
ic = [y(0) == -25, dy(0) == 4]
sol = dsolve(eqn, ic)
sol = simplify(sol, 'steps', 50)
%cross-check
subs(eqn, y, sol)
simplify(ans)
%numeric form
[eqs,vars] = reduceDifferentialOrder(eqn,y(x))
[M,F] = massMatrixForm(eqs,vars)
f = M\F
odefun = odeFunction(f,vars)
initConditions = [-25 4];
ode15s(odefun, [0 10], initConditions)
So the function stored in odefun is what you would need to to process the system numerically
odefun(x, [y(x); dy(x)])
Vedere anche
Categorie
Scopri di più su Calculus in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!