error in using eig built-in function

2 visualizzazioni (ultimi 30 giorni)
Alireza
Alireza il 14 Nov 2023
Spostato: John D'Errico il 15 Nov 2023
Hi all,
I run into an issue whrn using the 'eig'.
I have 2 matrcies, and need to find the eigenvalues of using eig function.
Any hints why I run into such an issue?
Thanks in advance.
code snippet including the k and m matrcies are attached.
clc; close all; clear all;
ro = 2700; %kg/m^3
a = 4e-2; %
b = 1e-2;
c = 1; % same as L
L = c;
A = a* b; % cross section area
E = 70e09; % Youngs' modulus
I = (1/12)*(a*b^3)% second moment of area. NOT mass moment
I = 3.3333e-09
% case study is; simply-supported (pined-pined) beam
% lateral or transverse vibrations
syms x
n = 1 : 1 : 10;
gamma = n .* pi ./ L;
% phi = sin(gamma.*x);
for i = 1 : length(n)
for j = 1 : length(n)
phi(i) = sin((i*pi/L)*x);
phi(j) = sin((j*pi/L)*x);
m(i , j) = int(ro*A*phi(i)*phi(j), x, 0, L);
k_RR_Lag(i , j) = int(E*I*(diff(phi(i), x, 2)*diff(phi(j), x, 2)), x, 0, L);
end
end
[eig_vec, eig_val] = eig(k_RR_Lag, m);
Error using sym/eig
Too many input arguments.
% Sort eigenvectors and eigenvalues
[eig_val, idx] = sort(diag(eig_val));
eig_vec = eig_vec(:, idx);
% Display results
disp('Eigenvalues:');
disp(eig_val);
disp('Eigenvectors:');
disp(eig_vec);
  1 Commento
Alireza
Alireza il 15 Nov 2023
Spostato: John D'Errico il 15 Nov 2023
Thanksa lot. I got it (the outcome of k and m are not nue=meric values at first, so it is needed to convert them into numeric values (using 'double') then apply the 'eig' function. Or first initialize/preallocate them via zeros ...

Accedi per commentare.

Risposte (2)

Walter Roberson
Walter Roberson il 14 Nov 2023
Symbolic eig() does not support generalized eigenvalues.
  1 Commento
Walter Roberson
Walter Roberson il 14 Nov 2023
format long g
clc; close all; clear all;
ro = 2700; %kg/m^3
a = 4e-2; %
b = 1e-2;
c = 1; % same as L
L = c;
A = a* b; % cross section area
E = 70e09; % Youngs' modulus
I = (1/12)*(a*b^3)% second moment of area. NOT mass moment
I =
3.33333333333333e-09
% case study is; simply-supported (pined-pined) beam
% lateral or transverse vibrations
syms x
n = 1 : 1 : 10;
gamma = n .* pi ./ L;
% phi = sin(gamma.*x);
for i = 1 : length(n)
for j = 1 : length(n)
phi(i) = sin((i*pi/L)*x);
phi(j) = sin((j*pi/L)*x);
m(i , j) = int(ro*A*phi(i)*phi(j), x, 0, L);
k_RR_Lag(i , j) = int(E*I*(diff(phi(i), x, 2)*diff(phi(j), x, 2)), x, 0, L);
end
end
[eig_vec, eig_val] = eig(double(k_RR_Lag), double(m));
% Sort eigenvectors and eigenvalues
[eig_val, idx] = sort(diag(eig_val));
eig_vec = eig_vec(:, idx);
% Display results
disp('Eigenvalues:');
Eigenvalues:
disp(eig_val);
21045.1739888277 336722.783821243 1704659.09309504 5387564.54113989 13153233.7430173 27274545.4895207 50529462.7471753 86201032.6582382 138077386.540698 210451739.888277
disp('Eigenvectors:');
Eigenvectors:
disp(eig_vec);
Columns 1 through 7 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 1.36082763487954 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.36082763487954 0 0 0 1.36082763487954 0 0 0 1.36082763487954

Accedi per commentare.


Dyuman Joshi
Dyuman Joshi il 14 Nov 2023
Modificato: Dyuman Joshi il 14 Nov 2023
The symbolic function eig does not support the syntax that you are trying to use.
The numeric function eig does.
So, you can convert the variables to a numeric data type, preferrably by using double() .
Or you can preallocate them as a double array, as the values will then be automatically stored as double() values -
ro = 2700; %kg/m^3
a = 4e-2; %
b = 1e-2;
c = 1; % same as L
L = c;
A = a* b; % cross section area
E = 70e09; % Youngs' modulus
I = (1/12)*(a*b^3); % second moment of area. NOT mass moment
% case study is; simply-supported (pined-pined) beam
% lateral or transverse vibrations
syms x
n = 1 : 1 : 10;
gamma = n .* pi ./ L;
num = numel(n);
%% Preallocate a double() array
m = zeros(num);
k_RR_Lag = zeros(num);
for i = 1 : length(n)
for j = 1 : length(n)
phii = sin((i*pi/L)*x);
phij = sin((j*pi/L)*x);
m(i , j) = int(ro*A*phii*phij, x, 0, L);
k_RR_Lag(i , j) = int(E*I*(diff(phii, x, 2)*diff(phij, x, 2)), x, 0, L);
end
end
[eig_vec, eig_val] = eig(k_RR_Lag, m);
% Sort eigenvectors and eigenvalues
[eig_val, idx] = sort(diag(eig_val));
eig_vec = eig_vec(:, idx);
% Display results
disp('Eigenvalues:');
Eigenvalues:
disp(eig_val);
1.0e+08 * 0.0002 0.0034 0.0170 0.0539 0.1315 0.2727 0.5053 0.8620 1.3808 2.1045
disp('Eigenvectors:');
Eigenvectors:
disp(eig_vec);
1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608 0 0 0 0 0 0 0 0 0 0 1.3608

Categorie

Scopri di più su Linear Algebra in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by